
The predictability problem

James Kwan Yau Ong

Eingereicht bei der

Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

July 2007

This work is licensed under the Creative Commons Attribution-No Derivative Works
3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Elektronisch veröffentlicht auf dem
Publikationsserver der Universität Potsdam:
http://opus.kobv.de/ubp/volltexte/2007/1502/
urn:nbn:de:kobv:517-opus-15025
[http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15025]

Acknowledgements
I thank Professor Jürgen Kurths for accepting me into his group as his doctoral
student and providing an environment conducive to learning about the applica-
tion of nonlinear dynamics in many diverse fields. His group, the Arbeitsgruppe
für Nichtlineare Dynamik (AGNLD) in the Physics Department of the University
of Potsdam, is truly a melting pot for ideas from many different traditions, and
while most of the research performed in this group has nothing to do with my
research, I have greatly profited from the many lively academic discussions with
other members of the group.

I thank Professor Reinhold Kliegl for accepting me with open arms into his
Cognitive Psychology research group. From the first day, I never felt like an out-
sider in the group. His encouragement and guidance has been very welcome,
while never infringing on my independence as a researcher. The weekly forum
for students to present and discuss their work has been an invaluable learning ex-
perience, particularly for one without an extensive background in cognitive psy-
chology.

I thank Dr. Alexander Geyken for allowing me to use the computing facili-
ties of the Arbeitgruppe “Das Digitale Wörterbuch der deutschen Sprache des 20.
Jahrhunderts” to access and preprocess the ZEIT corpus.

I thank the International Max Planck Research School on Biomimetic Systems
for supporting me financially, and for exposing me to the application of biological
principles to other areas.

Of course, I thank all of the students, researchers and support staff in the many
groups for their insights, help and friendship. It has been a pleasure to work with
all of you. I must thank Lucia specifically for showing me that sometimes, you
just have to slog through what confronts you before you can do what interests you.

Thanks to all those in and outside of Berlin who have continued to keep in
touch with me in spite of the horrendously poor efforts on my part, all those who
believed in me from the start, all those who were interested in my research, all
those who have kept me in their prayers. I especially acknowledge my parents
and sister, who have provided all sorts of support in the last three and a half years.

Last, but of course not least, I must thank my lovely wife Ellen for everything
that she is and has done for me. Thanks for putting up with my working habits,
including the strange hours and the piles of paper scattered all around. Thanks for
discussing linguistics with me, even when you were too tired to do so. And thanks
for your patience with me, even though I was ‘almost finished’ for many months.
You’re the best.

i

Abstract
We try to determine whether it is possible to approximate the subjective Cloze
predictability measure with two types of objective measures, semantic and word
n-gram measures, based on the statistical properties of text corpora. The semantic
measures are constructed either by querying Internet search engines or by apply-
ing Latent Semantic Analysis, while the word n-gram measures solely depend
on the results of Internet search engines. We also analyse the role of Cloze pre-
dictability in the SWIFT eye movement model, and evaluate whether other pa-
rameters might be able to take the place of predictability. Our results suggest that
a computational model that generates predictability values not only needs to use
measures that can determine the relatedness of a word to its context; the presence
of measures that assert unrelatedness is just as important. In spite of the fact,
however, that we only have similarity measures, we predict that SWIFT should
perform just as well when we replace Cloze predictability with our measures.

ii

Zusammenfassung
Wir versuchen herauszufinden, ob das subjektive Maß der Cloze-Vorhersagbarkeit
mit der Kombination objektiver Maße (semantische und n-gram-Maße) geschätzt
werden kann, die auf den statistischen Eigenschaften von Textkorpora beruhen.
Die semantischen Maße werden entweder durch Abfragen von Internet-Such-
maschinen oder durch die Anwendung der Latent Semantic Analysis gebildet,
während die n-gram-Wortmaße allein auf den Ergebnissen von Internet-Suchma-
schinen basieren. Weiterhin untersuchen wir die Rolle der Cloze-Vorhersagbarkeit
in SWIFT, einem Modell der Blickkontrolle, und wägen ab, ob andere Parameter
den der Vorhersagbarkeit ersetzen können. Unsere Ergebnisse legen nahe, dass
ein computationales Modell, welches Vorhersagbarkeitswerte berechnet, nicht nur
Maße beachten muss, die die Relatiertheit eines Wortes zum Kontext darstellen;
das Vorhandensein eines Maßes bezüglich der Nicht-Relatiertheit ist von ebenso
großer Bedeutung. Obwohl hier jedoch nur Relatiertheits-Maße zur Verfügung
stehen, sollte SWIFT ebensogute Ergebnisse liefern, wenn wir Cloze-Vorhersag-
barkeit mit unseren Maßen ersetzen.

iii

Contents

1 Introduction 1
1.1 Overview of the dissertation . 1
1.2 What is predictability? . 1
1.3 Why do we want to compute predictability? 2

1.3.1 Predictability is useful 2
1.3.2 Predictability is difficult to collect 3

1.4 A computational model of predictability 4
1.4.1 Semantics . 4
1.4.2 Idiomatic constructions 6
1.4.3 Morphosyntax . 6

1.5 Do we really need predictability? 8
1.6 Chapter summary . 8

2 Semantic measures 9
2.1 Web co-occurrence measures . 9

2.1.1 Two possible measures 9
2.1.2 Comparison between the different search engines 10
2.1.3 Practical issues with querying search engines via API . . . 11

2.2 Latent Semantic Analysis measure 13
2.2.1 Preprocessing the source text 15
2.2.2 Creating the initial term–document matrix 17
2.2.3 Weighting the term–document matrix 17
2.2.4 Traditional Singular Value Decomposition 18
2.2.5 Fast Monte Carlo Singular Value Decomposition 19
2.2.6 Understanding the LSA measure 22

2.3 Do the different methods give rise to different semantic measures? 30
2.4 Comparison of our semantic measures with predictability 31

2.4.1 The effect of function words in the context 32
2.4.2 Graphical comparison and interpretation 34

2.5 Chapter summary . 37

iv

CONTENTS

3 Word n-gram measures 40
3.1 Using a word n-gram model to capture short-range structure . . . 40

3.1.1 Training text effects . 41
3.1.2 The problem of sparse data 41
3.1.3 Cross-validation of web frequency estimates 42

3.2 Comparison of word n-gram probabilities to predictability 42
3.3 Chapter summary . 43

4 Semantic and word n-gram measures combined 46
4.1 Combination of web measures 46
4.2 Combination of the web co-occurrence and the LSA measures . . 48
4.3 Chapter summary . 49

5 Reversing SWIFT to test its lexical processing component 51
5.1 What is SWIFT? . 51
5.2 Implementations of lexical processing 51

5.2.1 SWIFT-II . 52
5.2.2 SWIFT-I . 54
5.2.3 Additive form . 54
5.2.4 Other possibilities . 55

5.3 The Reverse SWIFT method . 55
5.3.1 An example of the Reverse SWIFT method 57

5.4 Relating total lexical activation to word lexical features 58
5.4.1 Data . 58
5.4.2 Initial inspection . 58
5.4.3 Fitting the data to the proposed models 59

5.5 Another look at the form of the lexical processing function 60
5.5.1 Rereading paradigm . 61
5.5.2 Fitting rereading data to the proposed models 62

5.6 Other approaches to forming a lexical processing function 62
5.6.1 Web vs corpus frequency norms 63
5.6.2 Simple transformations of predictability 63
5.6.3 Semantic and n-gram measures 64

5.7 Chapter summary . 65

6 Discussion 66
6.1 Can we compute predictability? 66
6.2 Implications for another application of semantic and n-gram mea-

sures . 67
6.3 Is it possible to improve the lexical processing module in SWIFT? 67
6.4 Implications for other reading models 69

v

CONTENTS

6.5 Further work . 70

Appendix: Source code 71
A Preprocessing . 71

A.1 Collation . 71
A.2 Text cleaning and preparation 76
A.3 Conversion into the appropriate format 88

B Approximate Latent Semantic Analysis 93
B.1 Creating the initial term–document matrix 93
B.2 Log odds preprocessing 94
B.3 Fast Monte Carlo Singular Value Decomposition 100

C Reverse SWIFT . 109

Bibliography 115

vi

List of Figures

2.1 A sample plot of the distribution of frequency estimates (in this
case, of word bigrams in the Potsdam Sentence Corpus) returned
by the Google API. A plateau spanning the frequency range be-
tween 1,000 and 10,000 is clearly visible. 12

2.2 Empirically derived distribution of angular distance between two
randomly sampled vectors in our semantic space. 23

2.3 Illustration of the hypersurface area Sγ
n. 25

2.4 Proportion of randomly distributed vectors within angle γ from an
arbitrarily chosen target vector in 200-dimensional isotropic space. 26

2.5 Properties of vectors in our semantic space when classified based
on their angular distance from the main diagonal. The Euclidean
norm axis has been rescaled to show the features of the main bulk
of points; as a result, a number of points with extremely high
norms have been excluded from the graph. Note that the angle be-
tween an axis and the main diagonal in our 600,000-dimensional
embedding space is an unintuitively large 89.9°. 27

2.6 Singular value spectrum of the weighted sampled matrix R created
during one run of the Fast Monte Carlo Singular Value Decompo-
sition algorithm. 28

2.7 Proportion of randomly distributed vectors within angle γ from an
arbitrarily chosen target vector in 200-dimensional space, with an
anisotropy factor of 2.2, perpendicular to the target vector. 29

2.8 Relationship of semantic similarity to pointwise mutual informa-
tion. These two measures appear to be uncorrelated. 31

2.9 Relationship of semantic similarity to log conditional co-occur-
rence probability. These two measures are weakly correlated. . . . 31

vii

LIST OF FIGURES

2.10 Effect of log odds weighting on the ∞-norm of word vectors. Vec-
tors are parametrised on the horizontal axis by the cosine of their
angle from the main diagonal. The closer a vector is to the main
diagonal, the more nonzero elements it must have. We expect
function words to have many nonzero elements, since they oc-
cur in many documents. We can see that, in general, the log odds
weighting reduces the ∞-norm for words that occur in many docu-
ments relative those that only occur in a small number of documents. 35

2.11 Distribution of the ∞-norm of word vectors after application of
approximate Singular Value Decomposition. Vectors are parame-
trised on the horizontal axis by the cosine of their angle from the
main diagonal. It is now no longer true that there is a low ∞-norm
for words that are near to the main diagonal. 36

2.12 Relationship of predictability to pointwise mutual information.
The vertical axes have been rescaled so that the resulting plots
look similar. Pointwise mutual information appears to be unre-
lated to predictability. 37

2.13 Relationship of predictability to web conditional co-occurrence.
Points with a low conditional co-occurrence probability are very
likely to have a low predictability value. Note the lack of strict
adherence to nonpositive values, especially in the case of results
from Google. 38

2.14 Relationship of predictability to the LSA measure. Only words
with a pre-SVD ∞-norm greater than 3.2 were included in the
analysis leading to this graph. The length of the error bars is twice
the standard error. Points with a low conditional co-occurrence
probability are very likely to have a semantic similarity that is not
significantly different from chance. The points with zero semantic
similarity correspond to the first content word of each sentence. . . 39

3.1 Comparison of web word frequency estimates to DWDS word fre-
quency norms. The web norms are roughly in agreement with
those derived from the DWDS corpus, with the Google norm giv-
ing the best agreement. 43

3.2 Comparison of web word bigram frequency estimates to DWDS
word bigram frequency norms. For high word bigram frequency
estimates, the web norms are roughly in agreement with those de-
rived from the DWDS corpus. The sparsity of the DWDS corpus
in comparison with the web norms is clearly visible. Note the
anomalous lack of points with frequency between 103 and 104 in
the Google and Yahoo! estimates. 44

viii

LIST OF FIGURES

3.3 Comparison of web word trigram frequency estimates to DWDS
word trigram frequency norms. For high word trigram frequency
estimates, the web norms are roughly in agreement with those de-
rived from the DWDS corpus. The sparsity of the DWDS corpus
in comparison with the web norms is clearly visible. Note the
anomalous lack of points with frequency between 103 and 104 in
the Google and Yahoo! estimates. 44

3.4 Relationship of predictability to word n-gram probability. For this
plot, we backoff zero probabilities. Points with a low word n-gram
probability are likely to have a low predictability value. 45

4.1 Relationship of predictability to web word n-gram and conditional
co-occurrence measures. Points are coloured according to pre-
dictability, where the specific colour, shown on the colour bar, is
determined by logarithmic interpolation between the two extremes. 47

4.2 Relationship of predictability to the web word n-gram measure
and the LSA measure. Points are coloured according to predicta-
bility, where the specific colour, shown on the colour bar, is deter-
mined by logarithmic interpolation between the two extremes. . . 49

4.3 Relationship of predictability to the web word n-gram measure
and the Latent Semantic Analysis p-value. Points are coloured ac-
cording to predictability, where the specific colour, shown on the
colour bar, is determined by logarithmic interpolation between the
two extremes. The artificial lower p-value boundary is an artefact
of the limited number of random word pairs sampled to generate
an estimate of the p-value. 50

5.1 Block diagram of SWIFT . 52
5.2 Lexical processing rate function with parameter values of σL =

2.41 and σR = 3.74. 53
5.3 Block diagram of Reverse SWIFT 56
5.4 Median total lexical activation as a function of CELEX word fre-

quency, length and predictability. 58
5.5 Median total lexical activation as a function of CELEX word fre-

quency, length and predictability, taken pairwise. The colour scale
denotes the amount of total lexical processing, with the minimum
(Tn = 30) coded as blue, while the 99th percentile (Tn = 350) is
coded as red. 59

ix

LIST OF FIGURES

5.6 Median total lexical activation as a function of CELEX word fre-
quency, length and predictability, shown simultaneously. The col-
our scale denotes the amount of total lexical processing, with
the minimum (Tn = 30) coded as blue, while the 99th percentile
(Tn = 350) is coded as red. 60

x

List of Tables

2.1 Differences between the semantic measures. 30

5.1 The original lexical processing function used in SWIFT-II, and
different fits of total lexical activation using the proposed lexi-
cal processing functions. The fourth column shows the sum of
squares residual left over after fitting. 61

5.2 Different fits of total lexical activation for the rereading data us-
ing the proposed lexical processing functions. The fourth column
shows the sum of squares residual left over after fitting. 62

5.3 Different fits of total lexical activation using different transforma-
tions of predictability. The third column shows the sum of squares
residual left over after fitting. 64

5.4 Different fits of total lexical activation using our derived mea-
sures. The third column shows the sum of squares residual left
over after fitting. 64

xi

Chapter 1

Introduction

1.1 Overview of the dissertation
In this dissertation, we consider two hypotheses:

1. Predictability can be generated computationally by combining two simple
measures; the first represents semantic relationships, while the second cap-
tures short-range morphosyntactic constraints.

2. The form of the lexical processing component of SWIFT, a model that sim-
ulates eye movements during reading, can be deduced from real data.

The rest of this chapter contains the motivation for this research and an outline of
the measures that we use to study these hypotheses. Chapter 2 details the creation
of our semantic measures and then shows a comparison of them to predictability.
Chapter 3 is similar, except that it deals with our word n-gram measures. Chapter
4 considers whether a combination of semantic and word n-gram measures can be
used to generate predictability values. In Chapter 5, we explore a method to use
real data to deduce the form of the lexical processing component of SWIFT, and in
addition, consider whether our derived measures may be useful as alternatives to
predictability. Finally in Chapter 6, we bring all the threads together and consider
the implications of this research.

1.2 What is predictability?
Predictability is an experimental estimate of a person’s ability to predict what
is coming up, based on what has come before. The ability to generate correct
predictions is reliant on many factors, including a person’s specific knowledge
and the entropy of the signal.

1

CHAPTER 1. INTRODUCTION

To generate a quantitative estimate of the predictability of target words during
reading, one can use the Cloze task [62]. In this task, a large number of subjects
are asked to guess target words given a previous text context. The Cloze pre-
dictability value is the proportion of subjects who correctly guess the target word.
Equivalently, one can use the responses to build a probability distribution repre-
senting the chance that a certain word occurs, given the previous text context. The
Cloze predictability measure summarises the many components of predictability
into a single probability estimate; this measure specifies the chance that a subject
will correctly predict the target word, given the preceding incomplete text con-
text. We will be using Cloze predictability as our quantitative representation of
predictability.

In this dissertation, we will be using the Cloze predictability norms collected
for the Potsdam Sentence Corpus [33] as a yardstick to allow us to assess our
attempts to model predictability. Importantly, predictability norms were collected
for every word in the corpus, and not just for a subset of target words.

1.3 Why do we want to compute predictability?

1.3.1 Predictability is useful
In our modern society, the application of predictability has significantly affected
the way that most of us live our daily lives. Predictive text on mobile phones,
speech recognition, and targeted marketing based on individual shopping patterns
are all very direct illustrations of the power of applied predictability. Most appli-
cations use rather simple methods to generate predictability estimates, but these
crude estimates often extract a surprisingly large amount of information from the
raw data.

The applications of predictive text and speech recognition use predictability
estimates to guess upcoming words in the face of uncertainty. If we had a way to
generate perfect Cloze predictability estimates given a certain context, we would
then be able to automatically complete a text fragment in a sensible way. A ‘per-
fect’ predictive text could suggest words even without the user needing to enter the
first few letters, while ‘perfect’ speech recognition would be able to decipher un-
clear utterances and disambiguate homophones. In addition, such models should
also be able to detect syntactic and semantic anomalies.

Another way of using predictability is to consider it to be an estimate for the
difficulty or unexpectedness of the current word given the previous context. A
highly difficult word is likely to have a low predictability, while an easy word
(given the context) is likely to be somewhat predictable. This interpretation is
especially suited for the domain of cognitive psychology, where difficulty can be

2

CHAPTER 1. INTRODUCTION

seen as contributing to cognitive load. Predictability has proven to be a useful
attribute in the modelling of reading behaviour, since it captures important fea-
tures that are not captured in simpler first-order word attributes such as frequency,
length or sentence position [23, 34]. The fact that we try to anticipate upcoming
words is often painfully obvious when we listen to a person speaking unusually
slowly.

A far more ambitious use of an autonomously generated predictability esti-
mate occurs in the research area of artificial intelligence. Going back to the roots
of artificial intelligence, we come across the question: “Can machines think?”
As one means of addressing this question, Turing proposed the “Imitation Game”
[63] (now more commonly known as the “Turing Test”), in which a computer is
judged on its ability to respond to questions in a human-like manner. An alter-
native test that is more relevant to the current application, the Editing Test, was
proposed by Collins [16] in an attempt to get to the core of the issue, while cir-
cumventing many of the tricks that are commonly used to fake understanding of
language. Collins proposed that a computer be judged on its ability (relative to
a human control) to subedit previously unseen passages of incorrect English. A
program that were able to generate predictability values for a sentence would sig-
nificantly contribute to the ability of a computer to correctly detect errors in text
passages, which is the first requirement to pass the Editing Test.

1.3.2 Predictability is difficult to collect
The Cloze procedure is obviously a time and manpower intensive way to derive
quantitative estimates of predictability, especially if one wants to end up with sta-
tistically stable probability estimates. Some researchers have attempted to reduce
the overhead needed to collect predictability values by choosing only one target
word per sentence (see [51] for one example), but this severely reduces the utility
of the underlying text. In practice, if one considers word predictability to be an
important variable in a psychophysical experiment, one is limited to using text that
has previously been designed for some other purpose, possibly limiting important
experimental manipulations of sentence construction and content.

It would be far cheaper and more convenient to use a method to estimate pre-
dictability that did not require the collection of data within an experimental con-
text. Ideally, such a method should also function automatically, without the need
for a large amount of human input and without the need for excessively powerful
computers.

3

CHAPTER 1. INTRODUCTION

1.4 A computational model of predictability
Intuitively, the measure of predictability seems to be heavily dependent on a deep
understanding of the structure of a language. Adult subjects completing a Cloze
task in their native language generally have no trouble in putting forward sug-
gestions that are both grammatically correct and somehow topically related to the
context. In addition, they can pick up on cues or idiomatic constructions to pro-
pose words that somehow sound ‘normal’. Firth [25] summed up this intrinsic
knowledge with the famous remark: “you shall know a word by the company it
keeps”.

By creating a computational model that generates predictability estimates and
noting the essential elements of the model, one can test the assertion that pre-
dictability reflects a deep understanding of language. Griffiths, Steyvers, Blei and
Tenenbaum [28] show that a sophisticated generative model that incorporates both
morphosyntactic and semantic dependencies can predict many of the fundamen-
tal properties of individual words. We will explore in the rest of this dissertation
whether it is possible to approximate predictability with far simpler metrics that
capture some of the effects of semantics and morphosyntax.

1.4.1 Semantics
The aim of a semantic model is to allow a computer to extract the relevant content
or the ‘meaning’ of its input; this ‘understanding’ can then be used to make the
computer appear to be smart. Increasingly, web search engines1 are attempting to
use semantic models to anticipate the meaning of search terms in order to improve
the relevance of the results given. Indeed, the range of readily-available commer-
cial programs2 reflects the success of semantic models at extracting ‘knowledge’
from large data stores.

The simplest way to build a semantic model is to create categories (some-
times hierarchical in structure) and then allocate words to each category. Both the
creation of categories and the allocation of words to categories may be entirely

1A Google search with the search terms “semantic search engine” produces many
examples of search engines that incorporate semantic typing; two examples can be
found at http://www.cs.umd.edu/projects/plus/SHOE/search/ and
http://www.semanticwebsearch.com/. A number of groups that have demon-
strated success in integrating semantic modelling into the search paradigm are now fully in the
commercial arena, like http://www.previewseek.com/; others are supporting an open
source approach, like http://www.alvis.info/.

2A recent article [35] in the popular computer magazine c’t is dedicated to the topic of smart
search software. All of these software packages first generate a semantic space or network, and
then attempt to cluster together concepts that are close together.

4

CHAPTER 1. INTRODUCTION

or partly dictated by human knowledge, or may be generated automatically from
training texts.

In the last few years, there have been many papers outlining more sophisticated
ways of capturing semantic relationships. These have included neural networks
[42], semantic networks [24, 60] and semantic spaces [40, 59]. After the semantic
model is constructed, a similarity metric can be defined between elements, often
so that a small distance in the metric implies high similarity. Simple semantic
similarity metrics can be either first-order or second-order measures.

First-order semantic measures

First-order semantic measures are based upon the co-occurrence of words. One
example of a first-order measure is a synonymity measure, where words are said
to be close together if they co-occur in a thesaurus entry; equivalently, one can use
a database like WordNet [24]. Using such a measure, one can build a semantic
network, in which words are represented by nodes and related words are joined
by an arc; once such a network has been constructed, one possible first-order
measure is network distance. One problem in generating a synonymity measure is
that the underlying resource, like a dictionary or thesaurus, must already exist in
the required language. In addition, the translation process from the native format
to one useful to the researcher may be rather involved.

Another first-order semantic measure is the probability that two words co-
occur on an Internet web page. Surprisingly, the extremely large amount of source
data seems to overcome the naïvety of the measure and the inherent noisiness of
data drawn from the Internet [64]. Internet search engines allow researchers to ac-
cess this data quickly and easily, and the provision of Application Programming
Interfaces by the major search engines has made bulk automated querying a real-
istic proposition. Due to the ease of collecting and calculating such a measure, we
will use this as our exemplar of a first-order semantic measure.

Second-order semantic measures

Second-order semantic measures attempt to take into account indirect relation-
ships between words. The main idea is that synonyms are unlikely to occur in
the same sentence, and thus should not be easy to derive by looking for simple
co-occurrences in a text corpus. Instead, one is likely to find similar words in
documents that share the same topic. However, if one can allocate the same topic
to different documents, then the semantically-important words occurring in these
documents should be somehow related.

Latent Semantic Analysis, described below in Section 2.2, places words into a
semantic space, where similar words are clustered together by a dimension reduc-

5

CHAPTER 1. INTRODUCTION

tion step. The angle between word vectors then serves as a second-order seman-
tic measure. Our major reason for choosing Latent Semantic Analysis over other
methods, like non-negative matrix factorisation [39, 10], is the existence of heuris-
tic methods to perform the procedure approximately; the need for such heuristics
is necessitated by the large amount of data that we would like to process.3

1.4.2 Idiomatic constructions
One of the main distinguishing features of language use between native and for-
eign speakers is the use of idiomatic and common combinations of words. Nat-
urally, the presence of such constructions greatly constrains sentence structure,
which should result in far higher predictability values than one would expect just
from word-based semantic and morphosyntactic considerations.

A natural way to capture such short-range sentence structure is to use word
n-gram models, described in Section 3.1. One motivation for doing this is some
evidence presented by McDonald and Shillcock [44], where they show that eye
movements during reading reflect the transitional probabilities between words.
Word n-gram models must be used carefully, since they exhibit the common prob-
lem of having sparse training data. In addition, the purest form of a word n-gram
model fails to capture long-range idiomatic relations such as the separable con-
structions commonly found in German4. One way of dealing with idiomatic ex-
pressions that exceed the span of a word n-gram model is to use a skipping word
n-gram model as mentioned by Goodman [27], but it is not clear how one might
select an appropriate skipping pattern.

We will use naïve word n-gram models to attempt to capture the effect of
idiomatic constructions.

1.4.3 Morphosyntax
The morphosyntactic requirements of a language limit the possible form and syn-
tactic category of words. In German, the form of a word is often highly depen-
dent on its context. However, predictability is highly divorced from pure syntax.

3One example given in Berry et al. [10] exemplifies the problem. They apply non-negative
matrix factorisation to their Enron corpus to try to classify 289,695 messages into 50 categories,
on the basis of a 7,424-word vocabulary. The procedure takes them about 20 minutes to perform,
which is roughly comparable to Singular Value Decomposition. In our case, the starting matrix is
more than two orders of magnitude larger; even if the procedure scaled up only linearly with size,
it would take weeks to calculate the result.

4Many idioms split into two parts. One such idiom, “Rolle spielen”, which means “to play a
role”, must in some cases split, because of syntactic principles, so that the verb “spielen” is moved
forward in the clause, which could be arbitrarily far away from the noun “Rolle”, which remains
at the end.

6

CHAPTER 1. INTRODUCTION

Chomsky [12] contends that it is incorrect to replace “zero probability, and all
extremely low probabilities, by impossible, and all higher probabilities by possi-
ble”. He illustrates his point with the example context “I saw a fragile—,”, where
the word “whale” is a grammatically correct but highly unpredictable completion,
while the word “of” cannot be used to complete the sentence in a grammatical
way; the two words may both have predictability zero, although one is allowed
and the other is not. This example demonstrates that predictability is only loosely
related to acceptability.

Let us, however, for a moment assume that we have a predictive parser that
perfectly tells us the possible syntactic categories of the upcoming word and their
associated probabilities. Taking Chomsky’s example again, we should now be
able to say that “of” must have zero predictability since the probability of a prepo-
sition in this context is zero. However, we still have no information telling us that
“whale” should also be unpredictable, since a noun works perfectly as a comple-
tion. This suggests that we may be able to use syntactic information to predict
zero predictability values of ungrammatical instances; this does not help us fur-
ther, since our corpus is, by design, grammatically correct.

It also makes no sense to use syntactic information to smooth a word n-gram
model in a simple way by replacing unseen word n-grams by the equivalent n-
gram containing only word class. For example, the 4-gram “I saw a fragile” could
be recoded as “Pronoun Verb Article Adjective”. Then, assuming that “whale”
has never been seen in the training corpus, we would look at the probability that
“Pronoun Verb Article Adjective” was followed by “Noun”. This probability tells
us nothing about predictability when the completion is syntactically valid, and we
cannot even naïvely use it as an estimate of an upper bound for predictability5.

In this dissertation, we will not explicitly attempt to accommodate morphosyn-
tax. The use of a word n-gram model may capture short-range syntactic con-
straints well enough to negate much of the contribution provided by an explicit
syntactic model. The only obvious void is the ability to predict long-range syntac-
tic constraints, which occur frequently in German; these may be accommodated,
for example, by incorporating predictions from a grammar that has a transforma-
tional rule allowing a terminal verb to move forward in the sentence. Bellegarda
[8] addresses this issue in a brief review of the use of syntactic models for “syntac-
tically driven span extension”. Such a model can be added to our considerations
without too much difficulty.

5A simple illustration of this, taken from our test sentences, is the trigram “(start of sentence)
Man kann”: The predictability of “kann” is high, but the probability that a personal pronoun at the
start of the sentence is followed by a modal verb is more than an order of magnitude lower.

7

CHAPTER 1. INTRODUCTION

1.5 Do we really need predictability?
A totally separate question to those already posed is whether it is actually neces-
sary to compute predictability. In many applications where predictability could
be useful, it may actually be better to use a more specific, less all-encompassing
measure than predictability, especially if such a measure does not rely on explicit
human input. In the case of eye movement research, word predictability has been
used as a predictor because it captured lexical features that were not described by
the other predictors of word frequency and length, but also because there were
no other available predictors that could explain the difficulty of reading a word
in its semantic and syntactic context. In Chapter 5, we consider what the role of
predictability should be in the SWIFT reading model, and whether our derived
measures may be useful alternatives to predictability.

1.6 Chapter summary
Predictability is a useful parameter to have, but it is difficult to collect. This mo-
tivates us to ask whether is it possible to compute estimates of predictability. We
will explore whether we can approximate predictability by using a combination
of simple measures that capture features of semantics and morphosyntax. We use
two types of semantic measures: the first is derived from Internet co-occurrence
frequency counts, while the second requires the application of Latent Semantic
Analysis to a text corpus. We hope to accommodate short-range constraints by
using a word n-gram measure. As well as doing a direct comparison between our
measures and predictability, we will look at the role of predictability in a reading
model, and consider whether there are other candidates for this role.

8

Chapter 2

Semantic measures

In this chapter, we will outline two methods for generating semantic measures,
and then examine the relationship of these two measures to predictability. The
first method produces a first-order semantic measure based on Internet web page
co-occurrence counts, while the second generates a second-order measure based
on the method of Latent Semantic Analysis applied to a newspaper corpus.

2.1 Web co-occurrence measures
The Internet is one of the largest training data sets available to researchers in
language research. Two important results motivate us to want to use the Internet
as a source of training data for language models: Banko and Brill [7] noted that the
performance of simple algorithms continues to improve as the size of the training
data increases, and Keller and Lapata [31] concluded that the size of the data set
outweighs the noisy and unbalanced nature of the data.

2.1.1 Two possible measures
Pointwise mutual information

Turney [64] compared the performance of two methods to correctly recognise
synonyms: the first was based on a simple web-based pointwise mutual infor-
mation measure, while the second was based on Latent Semantic Analysis (see
Section 2.2). He found that the web-based method does at least as well as the
other method and concludes that the amount of web training data compensates for
the simplicity of the mutual information measure.

Following Turney, we adopt pointwise mutual information as a possible first-
order semantic measure. For a pair of words wi and wj, the pointwise mutual

9

CHAPTER 2. SEMANTIC MEASURES

information PMIi j is defined as

PMIi j = log2

(
p(wi ∩wj)
p(wi)p(wj)

)
, (2.1)

where p(wi ∩wj) is the probability that words wi and wj co-occur in the same
webpage. If the two words wi and wj occur statistically independently of each
other, p(wi ∩wj) = p(wi)p(wj), and thus PMIi j = 0.

We can rewrite the definition of pointwise mutual information in terms of fre-
quency counts:

PMIi j = log2

(
T

f (wi ∩wj)
f (wi) f (wj)

)
, (2.2)

where T is the total number of web pages being searched. In practice, it is not
clear how many web pages are being searched in total, so we approximate this
with the frequency of the most common word.

Conditional co-occurrence probability

The other first order semantic measure that we will consider is the simple condi-
tional probability of a word dependent on a previous word in the context:

p(wj|wi) =
p(wi ∩wj)

p(wi)
=

f (wi ∩wj)
f (wi)

. (2.3)

This measure, in contrast to pointwise mutual information, is asymmetrical, re-
flecting the fact that semantic relationships are often asymmetrical. In the case
that words wi and wj occur statistically independently of each other, the condi-
tional probability p(wj|wi) reduces to p(wj).

2.1.2 Comparison between the different search engines
The Google, Yahoo! and Microsoft (MSN) search engines provide Application
Programming Interfaces (APIs) allowing queries to be sent from the command
line. At the moment, the daily number of queries per user (regulated by the provi-
sion of individual application keys and/or counting the number of queries per IP
address) is limited to 1,000, 5,000 and 10,000 queries respectively. Results from
the Yahoo! search engine are currently partly drawn from Google, while MSN
Search appears to be independent.

The Google and MSN APIs use the Simple Object Access Protocol (SOAP),
while the Yahoo! API follows the Representational State Transfer (REST) philos-
ophy; however, in reality, search requests to all of the APIs are submitted via Re-
mote Procedure Call (RPC), where a request created on the local machine causes a

10

CHAPTER 2. SEMANTIC MEASURES

remote machine to execute a specified procedure and then return a result message.
Creating RPCs in the correct format is a relatively simple matter, and example
scripts are either distributed with the API or can be found on the respective user
forums dedicated to each API.

In an attempt to make the web-based corpus more relevant, we limited each
search to pages in German but did not restrict searches by the country of the
server hosting the web page. Although a multitude of information can be supplied
in each search result, we were only interested in the estimated number of hits
corresponding to the search request.

2.1.3 Practical issues with querying search engines via API
There are a number of issues to be considered when submitting a query to an API:

• An API will occasionally fail to return a valid result to a request (for exam-
ple, it may time out), meaning that missing requests must be resubmitted at
a later time.

• All special characters, such as letters with umlauts and the ß character in
German, need to be replaced with standard ASCII equivalents. For example,
ä needs to be replaced with ae, ß needs to be replaced with ss.

• Searches are case insensitive.

• Results are encoded as 32-bit signed integers, meaning that values up to
331 − 1 can be accommodated. The Yahoo! and MSN APIs replace larger
values than this with the maximum value (2147483647), while the Google
API instead fails to return a valid response.

Google

Google Search seems to have an anomaly in the way that it estimates the number
of hits. There is a suspicious lack of results in the frequency range between 1,000
and 10,000, independent of query type or corpus language1; this discrepancy can
be seen in Figure 2.1. It may be that Google uses two algorithms for estimating
hits, one for high values and one for low values. Results from the MSN search
engine do not provide corroborative evidence that the lack of frequencies between

1To test whether the missing frequency range was an anomaly or a real finding, we queried
the Google API to obtain frequency estimates for the Schilling corpus [58], which is in English.
Since the same lack of results between 1,000 and 10,000 occurs for an English corpus, although
frequency estimates in English are generally a number of orders of magnitude greater than in Ger-
man, we attribute the missing frequency range to an anomaly in the Google frequency estimation
algorithm.

11

CHAPTER 2. SEMANTIC MEASURES

1,000 and 10,000 is real, but the frequency range to be verified is so low that clean
corpora are too small to provide evidence one way or the other.

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

log
10

 (Google bigram frequency + 1)

lo
g 10

 ra
nk

Distribution of Google−acquired bigram frequencies

Figure 2.1: A sample plot of the distribution of frequency estimates (in this case, of word
bigrams in the Potsdam Sentence Corpus) returned by the Google API. A plateau spanning
the frequency range between 1,000 and 10,000 is clearly visible.

In addition, the estimated number of hits for a particular query may vary de-
pending on the particular moment at which the query was sent. After a little
testing, it appeared that there could be at least five different values for each query,
varying by up to an order of magnitude. This creates problems because it means
that it is possible for estimated word bigram frequencies to be higher that the
estimated word unigram frequencies of the two words in the word bigram.

Going by the many annoyed posts on the Google Search API forum, the
Google Search API is not being updated and no support is being provided. Thus,
it looks unlikely that Google will resolve these problems in the near future. In
September 2006, Google officially released word n-gram statistics (up to n = 5)
for English [2], but has not yet done the same for other languages.

Yahoo!

Because Yahoo! sources some of its search results from Google, their API search
results suffer from the same anomalies that are found in the Google API, although
less so.

12

CHAPTER 2. SEMANTIC MEASURES

MSN

Language restriction via the MSN API, as specified in the CultureInfo field of
the SearchRequest class, is rather idiosyncratic, since it is not explicitly possi-
ble to specify the language German; instead, one must limit requests to a ‘culture’
like German–Germany (de-DE) or German–Austria (de-AT). Practically, how-
ever, the language restriction submitted in the search query seems to make very
little difference, as highlighted by the lack of real difference between results with
the en-US and the de-DE culture restrictions. This suggests that language re-
striction does not currently work correctly in the MSN API. In spite of this issue,
we chose to use the de-DE culture restriction, since the CultureInfo field
cannot be left blank in the search request.

When queried for the frequency of single words, the MSN API sometimes
returns significantly less hits than when the word is part of a multiword query.
This obviously indicates some fundamental error in the underlying estimation al-
gorithm.

2.2 Latent Semantic Analysis measure
Latent Semantic Analysis2 is a technique that was originally created to allow the
automatic indexing of documents by topic or meaning [17, 11]. There has been
so much interest in the research community that Landauer et al. have published
a book [38] specific to the topic; as well as addressing technical issues and deci-
sions peculiar to Latent Semantic Analysis, the authors suggest ways to apply and
extend the method.

Perhaps one of the most controversial claims about Latent Semantic Analysis
was made by Landauer and Dumais [36], who say that the method may reflect the
human process of the “acquisition, induction and representation of knowledge”.
Steyvers and Tenenbaum [60] throw doubt upon this claim by showing that the fi-
nal semantic space has far fewer isolated words (words with few close neighbours)
than empirically-derived human semantic representations—in network terminol-
ogy, a semantic network generated through Latent Semantic Analysis is small-
world but not scale-free; however, they propose no automated method to create a
semantic network that is scale-free.

In spite of the problem that Latent Semantic Analysis does not seem to pro-
duce a ‘human’ representation of knowledge, it is surprisingly good at automat-
ically clustering together concepts with similar meaning. Papadimitriou, Ragha-
van, Tamaki and Vempala [47] give a mathematical argument to explain why the

2Latent Semantic Analysis is also called Latent Semantic Indexing; these are abbreviated in
the literature as LSA and LSI respectively.

13

CHAPTER 2. SEMANTIC MEASURES

procedure is so successful at clustering together semantically similar concepts.
The utility of the method is reflected by the multitude of commercial applications
of Latent Semantic Analysis that have been patented3. Naturally, some variant of
Latent Semantic Analysis is probably also used by the major search engines to
classify websites4.

Initially, one forms a matrix, usually sparse, containing the number of occur-
rences of every token in every document. For the case of m tokens and n docu-
ments, this occurrence matrix would have size m×n. Equivalently, each token is
described by a vector of length n, while each document is described by a vector
of length m.

After obtaining the raw occurrence matrix, one needs to weight the matrix to
improve retrieval performance. Dumais [20] recommends the combination of a
local and a global weighting: Local weighting reduces the bias introduced by the
large range of raw term frequencies, while global weighting reduces the effect of
tokens that occur in many documents. The local weighting used by Landauer and
Dumais [36] is the log of the raw token frequency, and an entropy-based weighting
scheme is used as the global weighting. However, this combination does not sat-
isfactorily depress the importance of function words in our particular case, since
there is a very large range of token frequencies in our source corpus. To better
address this problem, we choose to use the binary local weighting mentioned by
Dumais [20], where raw token frequencies are replaced with a binary coding rep-
resenting the occurrence of a term in a document. For our global weighting, we
follow a proposal by Lowe [40] to transform each entry to the log of its odds ratio.

The heart of the Latent Semantic Analysis technique is Singular Value Decom-
position5, which is used to extract the principal components of the data. The most
important principal components are kept, while the rest are discarded in order to
reduce the dimensionality of the representation space. The aim of the dimension
reduction step is to cluster together data points that are somehow similar.

In the newly reduced space, tokens are considered to be similar to each other
if the angle between their representative vectors is small, irrespective of the length
of the vectors. Mathematically, one finds the cosine of this angle by taking a nor-
malised dot product; we will refer to this similarity measure as the LSA measure.

3A search of US Patents on http://www.freepatentsonline.com/with the search
phrase “latent semantic indexing” reveals more than a hundred patents that refer to the method.

4As an example, in 2003, Google acquired Applied Semantics [4], a company specialising in
semantic text processing, and currently uses its AdSense product to deliver targeted advertising.

5Singular Value Decomposition, often abbreviated as SVD, is the mathematical technique of
splitting a matrix into singular values and vectors. Principal Component Analysis is the application
of Singular Value Decomposition to a covariance matrix. We adopt some nomenclature from
Principal Component Analysis because this context is more likely to be familiar to experimentalists
and statisticians.

14

CHAPTER 2. SEMANTIC MEASURES

Another way of visualising this is as follows: Imagine placing the earth at the ori-
gin, with each of the tokens being stars in the sky; then similar tokens will appear
to be close together in the sky to an observer on the earth. In Section 2.2.6, we
discuss the inherent problems of defining ‘closeness’ in this way.

2.2.1 Preprocessing the source text
The text used is a selection of content taken from “DIE ZEIT”, a German weekly
newspaper. An electronic version was made available through the Arbeitsgruppe
“Das Digitale Wörterbuch der deutschen Sprache des 20. Jahrhunderts” (DWDS),
a project of the Berlin–Brandenburg Academy of Sciences (Berlin–Brandenburg
Akademie der Wissenschaften); approval for scientific use of the content was
given by Mr. Peter Buhr at “DIE ZEIT”.

Most of the content is drawn from the period between 1996 and mid-2005,
with the addition of articles drawn intermittently (roughly one month per two
years) dating back to the founding of “DIE ZEIT” in 1946.

Collating the text

After copying all the available data into a local directory, inspection showed that
the raw text would need to be extracted from XML files with irregular filename
extensions. Details of the collation process are found in the three files collect,
preproc1 and preproc2 found in Appendix A.1. The major steps in the pro-
cess are to:

• make a list of all files that could possibly contain text of interest, excluding
those that had a high proportion of nonsense words (e.g. chess articles) and
those that contained the small print about the day-to-day running of “DIE
ZEIT” (e.g. how to subscribe, who the editors were),

• combine all candidate files into one large file, so that paragraphs (everything
occurring between the XML tags <p...> and </p>) are segregrated from
the surrounding text by newline characters,

• extract paragraphs,

• remove or replace problematic characters, and

• remove XML tags and, if appropriate, the content between the tags.

15

CHAPTER 2. SEMANTIC MEASURES

Cleaning and preparing the text

The file resulting from the collection process, master.txt, now has the right
form, with one paragraph on each line, and it is likely that most of the content is
the training text of interest. However, the text still has strange characters present
that need to be dealt with. In addition, we need to make key decisions that always
need to be made when dealing with a text corpus, including considering what to
do with punctuation, capitalisation and numbers.

The file mkmaster1 contains all the necessary commands to clean the cor-
pus. The first major output file, master.newtxt, can be considered to be a
cleaned version of the corpus, where punctuation has been dealt with appropri-
ately. The two files produced subsequently, master.lowertxt and master.
nonum reflect the decisions to remove capitalisation6 and numbers from the text
corpus.

The cleaning process consists of the following steps:

• remove control characters,

• deal with special character encodings (including XML and Unicode encod-
ings),

• remove World Wide Web addresses (including HTTP, FTP and email ad-
dresses),

• remove certain punctuation and special characters,

• deal with abbreviations, initials and other sequences containing full stop
characters,

• remove certain punctuation sequences, and

• deal specially with full stops, commas and question marks.

We will refer to the resulting cleaned text as the Zeit corpus.

Conversion into the appropriate format

To create the LSA measure, we require an occurrence matrix detailing the fre-
quency of each token (individual word form) in each paragraph. The file mkmaster2
produces all the files required for both calculations.

6Capital letters in German are highly linked to the word class, but they contribute far less to
semantic content. Since it is unlikely that they would contribute anything at all to the seman-
tic clustering carried out by Latent Semantic Analysis, capitalisation was removed to reduce the
sparsity of the source data.

16

CHAPTER 2. SEMANTIC MEASURES

Initially, the CMU toolkit [13], self-customised to increase the maximum al-
lowable vocabulary size, is used to generate a vocabulary and collect the frequen-
cies of tokens. The specific executables taken directly from the CMU toolkit were:

• text2wfreq, which creates the token frequency list; and

• wfreq2vocab, which creates the vocabulary file of tokens.

After this initial processing, we create a ‘numerised corpus’ by allocating a
unique number to every token in the vocabulary and then replacing every token in
the text by its corresponding vocabulary number. This conversion process, though
simple in principle, is time consuming and requires one to program with memory
limitations in mind, due to the size of the corpus and the vocabulary.

Before we can import this numerised corpus into MATLAB, a couple of other
small steps are required, including replacing newline characters with line num-
bers. The file mkmatlab contains the commands to carry out these preliminary
steps.

2.2.2 Creating the initial term–document matrix
The first step in the Latent Semantic Analysis procedure is to create a term–
document matrix, where each entry in the matrix is the raw occurrence frequency
of a term (normally a token) in a document. Of course, not all terms contribute
to the semantic content of a document, but Quesada [49] suggests that it is un-
necessary to manually remove function words, since weighting steps (like those
described in Section 2.2.3) should “take care of those high-frequency words”. The
MATLAB code used to create the initial term–document matrix can be found in
Appendix B.1.

Since the Latent Semantic Analysis procedure compares the occurrence pat-
tern of terms in different documents in order to characterise each document, we
can remove terms that only occur in one document without altering the principal
components of the data. Similarly, we can remove documents that only continue
one unique term, because these tell us nothing about the relationship between dif-
ferent terms. The repeated application of these culling rules reduces the size of
our term–document matrix without reducing the information content. The imple-
mentation of this procedure can be found in Appendix B.2.

2.2.3 Weighting the term–document matrix
Binary coding

The application of binary local weighting causes all term frequencies that are
nonzero to be replaced with 1. Without this conversion, fluctuations in the oc-

17

CHAPTER 2. SEMANTIC MEASURES

currence frequency of function words in different documents contribute to a large
spurious increase of their final ‘semantic content’. In other words, binary weight-
ing stops Latent Semantic Analysis from sorting documents into categories like
“contains many function words” and “contains few function words”.

Log odds

If fi j is the raw (binary-coded) frequency of the ith term in the jth document, then
the odds ratio θi j can be calculated in the following way:

θi j =
fi j ∑(k,l)/=(i, j) fkl

∑k /=i fk j ∑l /= j fil
. (2.4)

The transformed values now reflect how much the frequency of a certain term in
a certain document deviates from its appearance in the rest of the corpus. We use
the logarithm (base 10) of this odds ratio as our global weighting. A term that
occurs very specifically in only certain documents has a significantly positive log
odds ratio, while a term that occurs relatively unspecifically has a log odds ratio
near zero.

2.2.4 Traditional Singular Value Decomposition
Every matrix A ∈ R

m×n can be decomposed as

A = UΣV T (2.5)

where U = [u1u2 . . .um] is m×m and unitary7, V = [v1v2 . . .vn] is n×n and unitary,
and Σ is m×n and ‘diagonal’ in that Σi j = 0 unless i = j. The three matrices U ,
V and Σ constitute the Singular Value Decomposition of A. The real nonnegative
diagonal elements of Σ are called the singular values of A, while the columns of U
and V are called the left and right singular vectors of A respectively. The number
of nonzero diagonal elements of Σ is the rank of matrix A.

One way of carrying out a Singular Value Decomposition is to find the eigen-
values and eigenvectors of AAT and AT A, since

AAT = UΣV TV ΣTUT = UΣΣTUT =
r

∑
t=1

σ 2
t ututT

, and (2.6)

AT A = V ΣTUTUΣV T = V ΣT ΣV T =
r

∑
t=1

σ 2
t vtvt T

, (2.7)

7A matrix P ∈ R
p×p is unitary if P−1 = PT , so that PPT = PT P = Ip, where Ip is the p-

dimensional identity matrix.

18

CHAPTER 2. SEMANTIC MEASURES

where r is the rank of A.
If we take the submatrix Σr ∈ R

r×r of Σ that only includes the r nonzero sin-
gular values, and the submatrices Ur and Vr containing the corresponding r left
and right singular vectors, then

A = UrΣrV T
r =

r

∑
t=1

σtutvtT
. (2.8)

This sum reflects the contributions of each of the principal components of A. In the
dimension reduction step of Latent Semantic Analysis, it is necessary to discard
lesser terms of this sum. If k ≤ r and we define

Ak = UkΣkV T
k =

k

∑
t=1

σtutvtT
, (2.9)

where we retain the terms containing the k largest singular values of A, then Ak is
the projection of A onto the space spanned by the top k singular vectors of A. In
addition, Ak is an optimal k-rank approximation to A, in that it is the closest rank
k matrix to A under the Frobenius norm8.

2.2.5 Fast Monte Carlo Singular Value Decomposition
Landauer, Foltz and Laham [37] mention that “it is still impossible to perform
SVD on the hundreds of thousands by tens of millions matrices that would be
needed to truly represent the sum of an adult’s language exposure”. In his tutorial
on Latent Semantic Analysis, Quesada [49] misleadingly dismisses the problem of
memory limitations, saying that “nowadays the memory bottleneck is no longer
an issue, since a consumer-level PC can be configured with more than enough
memory to run a large SVD”; however, that is only strictly true for certain types
of problems with a small vocabulary of terms, such as identifying a synonym from
a list of candidates [36].

In the current application, the non-specific nature of the problem means that
we cannot substantially prune the source corpus or focus in on certain sections of
it. The occurrence matrix derived from the rather modestly sized Zeit corpus has
428,132 rows (tokens) and 628,905 columns (paragraphs), and although only one
in every ten thousand terms is nonzero, the MATLAB sparse matrix representation
is still 345 MB in size. The size of the matrix means that calculation of an exact
Singular Value Decomposition is impractical. In addition, most popular methods
to generate an approximate Singular Value Decomposition, including Lanczos [9],
would require impracticably large amounts of memory for this data set.

8The Frobenius norm ||A||F of matrix A is defined as: ||A||F =
√

∑m
i=1 ∑n

j=1 A2
i j.

19

CHAPTER 2. SEMANTIC MEASURES

Drineas, Kannan & Mahoney [19] describe two algorithms that allow the
computation of a low-rank approximation to a matrix without the need for large
amounts of memory. Both algorithms return a description of the most important
principal components, one being O(m + n) in memory and time, the other being
O(1). To reconstitute the low-rank approximation to the original matrix requires
further multiplications to be carried out, but these can also be streamlined to re-
duce memory requirements.

In the current application, we will only consider the LINEARTIMESVD algo-
rithm, firstly because it is feasible to carry out, and secondly because it generates
an estimate far closer to the exact solution than the CONSTANTTIMESVD algo-
rithm.

The basic algorithm

The algorithm here uses weighted sampling without replacement, as described
by Drineas, Kannan & Mahoney [19], but differs in that it returns right singular
vectors instead of left singular vectors. This is important to simplify the remulti-
plication process required to reconstitute the low-rank approximation.

Input: A ∈ R
m×n, r,k ∈ Z

+ s.t. 1 ≤ k ≤ r ≤ m, pi =
|A(k)|2
||A||2F

.

Output: Hk ∈ R
n×k and σt(R), t = 1, . . . ,k.

• For t = 1 to r,

– Pick it ∈ 1, . . . ,m with Pr(it = α) = pα , α = 1, . . . ,n.

– Set R(t) = A(it)/
√rpit .

• Compute RRT and its singular value decomposition; say

RRT =
r

∑
t=1

σ 2
t (R)ytytT

.

• Compute ht = RT yt/σt(R) for t = 1, . . . ,k.

• Return Hk, where H(t)
k = ht , and σt(R), t = 1, . . . ,k.

The rank k approximation to A, which we will call Ãk, is then calculated as
follows:

Ãk = AHkHT
k . (2.10)

20

CHAPTER 2. SEMANTIC MEASURES

Practical problems with the implementation

Although the algorithm described is simple, there are a number of practical prob-
lems that arise due to the tradeoff between convenience and memory requirements.
For convenience, we use MATLAB to carry out the required matrix operations, but
this choice means that each matrix used in a calculation needs to be fully available
in memory.

Of course, if one wrote code consistent with the Pass-Efficient model of data-
streaming computation proposed by Drineas [18], one would avoid most of the
memory limitations, but the loss of ease in this case was not justified. However,
the current amount of data drove the utilised computer resources9 to their limit,
and a slightly larger input data set would have forced a move away from MAT-
LAB.

The MATLAB code used can be found in Appendix B. On closer inspection,
the reader will note a number of work-arounds, including:

• splitting matrices into submatrices and processing these submatrices sepa-
rately,

• rewriting basic matrix operations like multiplication to operate with subma-
trices, and

• caching matrices to disk.

With the available resources, it was not possible to carry out the final multipli-
cation in the reconstruction of Ãk, since it is nonsparse in nature and would have
taken up a couple of terabytes of disk space. However, it was not necessary to cal-
culate the entire matrix. Instead, individual rows (representing tokens of interest)
were calculated in the obvious way:

Ãk(i) = A(i)HkHT
k , (2.11)

where the (i) subscript refers to the ith row. Performing a dot product on these
rows allowed us to calculate the LSA measure for pairs of words in a space-
efficient manner.

Monte Carlo estimation

To deal with the error in Ãk caused by the row sampling procedure, the LSA
measure was estimated 30 times for every pair of words in each sentence of the

9Most of the time, the limiting resource was the 1.5 gigabytes of RAM available. However, disk
space was also a consideration, since it was often necessary to store intermediate matrices to disk.
With 20 gigabytes of disk space, the process ran without requiring the removal of intermediate
files.

21

CHAPTER 2. SEMANTIC MEASURES

Potsdam Sentence Corpus. This number of simulations seems to be enough to
allow a meaningful estimate of the LSA measure; this can be seen in Figure 2.14,
where the standard error of the estimate is shown graphically.

2.2.6 Understanding the LSA measure
Traditionally, the semantic similarity measure used with Latent Semantic Analy-
sis is the cosine of the angle of two vectors in the reduced high-dimensional space.
Because of the high dimensionality of the space, the distribution of this measure
is far from uniform. Most studies get around this nonuniformity by simply con-
sidering the measure to be ordinal: the higher the measure, the more similar the
compared concepts must be. Another approach, proposed by Coccaro and Ju-
rafsky [14], is to raise the cosine of the angle to an exponent in an attempt to
“increase the dynamic range of the LSA probabilities”.

The current problem requires a more detailed understanding of the meaning
of a specific value of the measure, since we need to be able to answer a question
like: “If the LSA measure shows that two words have a semantic similarity of
0.3, does that mean that they are related?”. To answer such a question, we need
to derive the distribution of the LSA measure for random vectors. We do this
empirically, following the suggestion of Bellegarda [8]. Then, we use theoretical
considerations to explain certain properties of the distribution.

The empirical approach to derive an angle probability distribution between
two vectors in our semantic space is simple enough: one randomly selects vectors
representing terms and calculates the angle between them. The more one samples,
the closer the sampled distribution approximates the actual distribution. Figure 2.2
shows the empirically-derived distribution of semantic similarity between random
vectors in the semantic space10. This function enables us to determine whether
two vectors of interest are significantly closer than two randomly selected vectors,
and thus infer whether the respective tokens are semantically related. For example,
if the LSA measure of a pair of vectors is greater than 0.37, then these vectors are
significantly closer together (with a p-value of 0.01) than would be expected at
random. Even though we calculated the angle between 3.3×105 random pairs of
vectors, we still cannot estimate the p-value reliably down to three decimal places,
since very few of the sampled pairs are separated by less than 70°; these are the
cases that help to make up the long tail of the angle distribution.

In the following discussion, we will use the distribution of random vectors in
a hypersphere to give us insight into the shape of the empirically derived distribu-

10The sampling algorithm used here was stratified due to disk space limitations: Ten randomly
chosen token vectors were constructed at a time, and dot products were calculated between each
pair of vectors, resulting in 45 values; this procedure was carried out many times, and all results
were aggregated before being graphed.

22

CHAPTER 2. SEMANTIC MEASURES

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical distribution of random vectors in semantic space

cos γ

P
ro

po
rti

on
 o

f p
ai

rs

Figure 2.2: Empirically derived distribution of angular distance between two randomly
sampled vectors in our semantic space.

tion. We follow the theoretical approach to see how the shape of the distribution
reflects the method used to generate the semantic space. The theory will then al-
low us to predict the effect of altering parts of the method, such as the weighting
schemes or the dimension of the semantic space.

Hyperspherical definitions

A hypersphere is the generalisation of the concept of a sphere to arbitrary di-
mension. To avoid ambiguity, we will use the definition from geometry that an
n-hypersphere is defined as the set of points (x1,x2, . . . ,xn) such that

x2
1 + x2

2 + . . .+ x2
n = R2, (2.12)

where R is the radius of the hypersphere. In an extension of spherical coordinates
to higher dimensions, we can also describe the n-hypersphere with one radial
distance variable and n−1 angles in the following way:

• radial distance = R

• one angle resembling longitude, θ , ranging from 0 to 2π

• n−2 angles resembling colatitude, φi, ranging from 0 to π

23

CHAPTER 2. SEMANTIC MEASURES

These specifications in Cartesian and hyperspherical coordinates are related in the
following way:

x1 = Rsinφ1 sinφ2 . . .sinφn−2 sinθ
x2 = Rsinφ1 sinφ2 . . .sinφn−2 cosθ
x3 = Rsinφ1 sinφ2 . . .cosφn−2

...
xn−1 = Rsinφ1 cosφ2

xn = Rcosφ1

For the following discussion, we will arbitrarily consider the unit n-hyper-
sphere, where R = 1. In addition, we will arbitrarily choose a ‘target vector’ to be
the high-dimensional generalisation of north, which will be defined to be in the
direction of the xn axis; equivalently, this is the vector that has φ1 = 0.

Distribution of random vectors in isotropic space

Let us first consider the case of isotropic space, where random vectors are equally
likely to be oriented in any direction. Imagine that we pick random position vec-
tors describing points on the surface of the unit n-hypersphere. The proportion
of these vectors that are less than an angular distance γ away from our target
vector (i.e., those vectors where φ1 ≤ γ) is equivalent to the proportion of the hy-
persurface area of the hypersphere subtended by the angle γ (see Figure 2.3 for
an illustration of this in three dimensions). The hypersurface area Sn of the unit
n-hypersphere is

Sn =
∫ π

0
dφ1

∫ π

0
sinφ1dφ2

∫ π

0
. . .

∫ π

0

n−3

∏
i=1

sinφidφn−2

∫ 2π

0

n−2

∏
i=1

sinφidθ

=
∫ π

0

∫ π

0
. . .

∫ π

0

∫ 2π

0
sinn−2 φ1 sinn−3 φ2 . . .sinφn−2dθdφn−2 . . .dφ2dφ1,

and the hypersurface area Sγ
n of the hypersector φ1 ≤ γ is

Sγ
n =

∫ γ

0

∫ π

0
. . .

∫ π

0

∫ 2π

0
sinn−2 φ1 sinn−3 φ2 . . .sinφn−2dθdφn−2 . . .dφ2dφ1.

The proportion can thus be calculated in the following way:

Sγ
n

Sn
=

∫ γ
0 sinn−2 φ1dφ1∫ π
0 sinn−2 φ1dφ1

, (2.13)

24

CHAPTER 2. SEMANTIC MEASURES

Figure 2.3: Illustration of the hypersurface area Sγ
n.

since all the other terms in the integral are identical in the numerator and denom-
inator. Figure 2.4 shows this relation for n = 200. From the figure, we can see
that two randomly chosen vectors in a high-dimensional space are very likely to
be almost perpendicular.

We can consider the vertical axis to be a p-value of a statistical test with the
alternative hypothesis: “Two vectors are significantly closer to each other than
can be explained by a uniform random distribution.” If we use this interpretation,
we can see that all commonly used significance levels give rather similar critical
angular thresholds. Once we are at angular distances less than this critical angle,
our p-value criterion quickly loses its ability to distinguish how close together
vectors are; for example, if we have one pair of tokens separated by an angular
distance of 45° and a second pair separated by 50°, is the first pair significantly
more semantically related than the second? In other words, the metric of angular
distance in high-dimensional spaces does not allow a meaningful discrimination
of semantic closeness, although it is good at detecting whether two tokens are se-
mantically related. This problem is well-known as the “curse of dimensionality”
in the context of clustering in high-dimensional spaces, and is an inherent prob-
lem of metrics that do not artificially magnify the importance of the region near

25

CHAPTER 2. SEMANTIC MEASURES

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cos γ

pr
op

or
tio

n
of

 v
ec

to
rs

Distribution of vectors in 200−dimensional space

Figure 2.4: Proportion of randomly distributed vectors within angle γ from an arbitrarily
chosen target vector in 200-dimensional isotropic space.

the axes; however, if one does use such a metric, like the fractional distance met-
ric11 suggested by Aggarwal [5], the importance of function words is likely to be
artificially inflated, counteracting the effect of the log odds weighting.

Anisotropy generated by the nonnegativity of the word frequency matrix

The semantic space created by our method is embedded in a hyperspace that ap-
proximates the positive hyperquadrant. This is a consequence of the fact that
Latent Semantic Analysis clusters vectors arising from a nonnegative word fre-
quency matrix. Even after the binary and log odds weightings are applied, only
1.9% of the nonzero entries are negative, and these negative entries are small in
magnitude. The biases in direction and length of vectors in our semantic space are
displayed in Figure 2.5, where vectors are parametrised by their angular distance
from the main diagonal vector (1,1, . . . ,1). Since the dimension reduction step
of the procedure generally brings term vectors closer together, almost all vectors
will be wholly in the positive hyperquadrant, while most others will lie close to
the hyperfaces of the hyperquadrant. The trend toward higher norms as vectors
approach the main diagonal shows that the binary and log odds weightings have
not completely succeeded in removing frequency biases from the data.

This anisotropy is reflected in the empirical distribution (Figure 2.2) as an
asymmetric shift away from large angular distances when compared to the iso-

11This fractional norm is a simple extension of the standard norm on an Lp space. It is defined
as ||x|| f =

(
∑d

i=1 |xi| f
)1/ f

, where d is the dimension of vector x and f ∈ (0,1).

26

CHAPTER 2. SEMANTIC MEASURES

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

pr
op

or
tio

n
of

 v
ec

to
rs

Properties of vectors relative to the main diagonal

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

cos γ

no
rm

Figure 2.5: Properties of vectors in our semantic space when classified based on their
angular distance from the main diagonal. The Euclidean norm axis has been rescaled to
show the features of the main bulk of points; as a result, a number of points with extremely
high norms have been excluded from the graph. Note that the angle between an axis and
the main diagonal in our 600,000-dimensional embedding space is an unintuitively large
89.9°.

tropic case: There are far fewer angular distances greater than 96° represented
(i.e. cosθ < −0.1), while the point of inflection of the empirical distribution still
remains at about 90° (i.e. cosθ = 0).

Effect of anisotropy caused by the singular value distribution

There is another anisotropy introduced by the fact that vectors in our semantic
space are likely to be longer in some directions than others; this fact can be de-
duced from the singular value distribution. Figure 2.6 shows the singular value
distribution of the matrix R created in one run of the Fast Monte Carlo Singu-
lar Value Decomposition algorithm; we can see that the combination of binary
weighting, log odds weighting and row weighting have produced a spectrum that
is almost flat, except for the largest singular value. To examine the effect of this
type of anisotropy, we can look at a semantic space that is almost isotropic, except
that it is stretched in the principal direction corresponding to the largest singular
value.

Take the case where the semantic space is isotropic in all directions except
one, and this principal direction is at right angles to the target vector. Then, the

27

CHAPTER 2. SEMANTIC MEASURES

0 20 40 60 80 100 120 140 160 180 200
200

300

400

500

600

700

800

900

1000

1100

1200

Figure 2.6: Singular value spectrum of the weighted sampled matrix R created during one
run of the Fast Monte Carlo Singular Value Decomposition algorithm.

hypersurface area Sγ
n of the hypersector φ1 ≤ γ becomes

Sγ
n =

∫ γa

0

∫ π

0
. . .

∫ π

0

∫ 2π

0
sinn−2 φ1 sinn−3 φ2 . . .sinφn−2dθdφn−2 . . .dφ2dφ1,

where γa = arctan(a tanγ) and a > 1 is an anisotropy factor. The proportion of
random vectors within angle γ from the target vector becomes

Sγ
n

Sn
=

∫ γa
0 sinn−2 φ1dφ1∫ π
0 sinn−2 φ1dφ1

. (2.14)

We can see that the stretching serves to rescale the distribution of angular dis-
tances, as illustrated in Figure 2.7. This effect accounts well for the stretching of
the empirical distribution for angles less than 90° when compared to the isotropic
distribution.

Conclusions about the shape of the semantic similarity distribution

To account for the shape of the empirical semantic similarity distribution, we
needed to consider three main factors: the dimension, the bias toward positiv-
ity caused by starting from a nonnegative frequency matrix, and the stretching of
space seen in the singular value spectrum.

Increasing the dimension of the space increases the probability that random
vectors will be close to perpendicular, reflected by a steeper central section in
the semantic similarity distribution. This certainly does not improve the discrim-
ination of our measure; the only reason that we might consider increasing the

28

CHAPTER 2. SEMANTIC MEASURES

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cos γ

pr
op

or
tio

n
of

 v
ec

to
rs

Distribution of vectors in 200−dimensional space with one anisotropic direction

Figure 2.7: Proportion of randomly distributed vectors within angle γ from an arbitrarily
chosen target vector in 200-dimensional space, with an anisotropy factor of 2.2, perpen-
dicular to the target vector.

dimension of our semantic space is if we believed that the dimension reduction
step causes too great a loss of important information.

The bias toward positivity is unlikely to be affected much by the specific com-
bination of local and global weightings, since we start out with a nonnegative
frequency matrix, although some weightings will result in a stricter restriction to
the positive hyperquadrant than others. As a result, we would expect that the LSA
metric should be either positive or very close to zero.

The stretching of space as seen in the singular value spectrum is specific to
the method being used to create the semantic space. The original frequency dis-
tribution obeys a power scaling relation reflecting the manifestation of Zipf’s law
in natural language [41], but the combination of binary local weighting, log odds
global weighting and dimension reduction removes much of the heterogeneity in
the truncated singular value spectrum. Even small changes to the method may
result in significantly different amounts of stretching of the semantic similarity
distribution. The more heterogeneous the singular value spectrum, the harder it
should be to predict the amount of stretching of the similarity distribution, since
the stretching will affect different vectors by different amounts.

Because none of these factors changes the general shape of the semantic simi-
larity distribution, we can see that a semantic similarity measure based on angular
distance will always suffer from the curse of dimensionality mentioned in Sec-
tion 2.2.6, meaning that the measure allows the detection of semantic relatedness,
but is poor in discriminating the amount of relatedness. This result may not be

29

CHAPTER 2. SEMANTIC MEASURES

so counterintuitive: Miller [45] observes that the human “span of absolute judge-
ment” for a unidimensional variable is quite limited12; if we apply this to the
unidimensional LSA measure between pairs of words, we may infer that humans
are able to classify a word pair as semantically related or not, but have a limited
ability to distinguish the degree of relatedness. Since the current work is aimed
at replicating human behaviour, it makes no sense for us to artificially increase
the dynamic range of the measure—such an increase would only mean that we
would have to redefine the critical p-values defining significance in a nonintuitive
manner.

2.3 Do the different methods give rise to different
semantic measures?

Conceptually, there are many obvious differences between the semantic measures
we have calculated; some of these differences are listed in Table 2.1. However,
our semantic measures all aim to represent the same attribute, namely the semantic
relatedness of two words, and therefore, we should expect that the measures to be
somewhat correlated. In Figures 2.8 and 2.9, we can see that the LSA measure is
weakly correlated with the web conditional co-occurrence measure, but seems to
be unrelated to the web pointwise mutual information measure.

Web measures LSA measure
First order Second order

May be dependent on word order Independent of word order
Easy to calculate Difficult to calculate

Large amount of training text Small amount of training text
Noisy training text Clean training text

Heterogeneous subject material Newspaper articles

Table 2.1: Differences between the semantic measures.

12Miller’s actual words are “... I maintain that for unidimensional judgments this span is usually
somewhere in the neighborhood of seven”.

30

CHAPTER 2. SEMANTIC MEASURES

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

semantic similarity

G
oo

gl
e

po
in

tw
is

e
m

ut
ua

l i
nf

or
m

at
io

n

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

semantic similarity

Y
ah

oo
! p

oi
nt

w
is

e
m

ut
ua

l i
nf

or
m

at
io

n

0 0.2 0.4 0.6 0.8 1
28

30

32

34

36

38

40

42

44

46

48

semantic similarity

M
S

N
 p

oi
nt

w
is

e
m

ut
ua

l i
nf

or
m

at
io

n

Figure 2.8: Relationship of semantic similarity to pointwise mutual information. These
two measures appear to be uncorrelated.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

semantic similarity

lo
g

G
oo

gl
e

co
nd

iti
on

al
 c

o−
oc

cu
rr

en
ce

 p
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
−8

−7

−6

−5

−4

−3

−2

−1

0

1

semantic similarity

lo
g

Y
ah

oo
! c

on
di

tio
na

l c
o−

oc
cu

rr
en

ce
 p

ro
ba

bi
lit

y

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

semantic similarity

lo
g

M
S

N
 c

on
di

tio
na

l c
o−

oc
cu

rr
en

ce
 p

ro
ba

bi
lit

y

Figure 2.9: Relationship of semantic similarity to log conditional co-occurrence probabil-
ity. These two measures are weakly correlated.

2.4 Comparison of our semantic measures with pre-
dictability

The semantic measures that we have defined give us a way of determining the
semantic relatedness of two individual tokens. However, predictability reflects
the effect of a multiword context upon a specific target word. It is not obvious
how one should generalise similarity measures defined for word pairs to take into
account a multiword context.

An interesting feature of Latent Semantic Analysis is the proposition that one
may be able to assign vectors in semantic space not only to tokens, but to com-
binations of tokens, such as word sequences or sentences. Landauer and Dumais
[36] propose that the vector for each combination be simply “an appropriately

31

CHAPTER 2. SEMANTIC MEASURES

weighted vector average of the condensed vectors of all the events whose local
temporal associations constituted it”, but it is not clear whether this is a mean-
ingful or sensible thing to do. A more plausible method to derive a vector for a
combination of tokens, proposed by Bellegarda [8], is to create a new ‘document’
containing the required tokens and then use the already-discovered principal com-
ponents to project this document to the final reduced-dimensional semantic space,
as if it were a real document. However, this approach is computationally difficult
and is only seems to be worth carrying out if the preceding context is relatively
long.

Because contexts in the Potsdam Sentence Corpus never consist of more than
ten words, it generally seems reasonable to treat content words13 found in the
context as being almost semantically independent: this means that every content
word significantly increases the amount of meaning in the context and that there
is little redundancy. As a first approximation, we will also assume that most of the
semantic content of the sentence is contained within the content words, although
it is clear that function words also add to semantic content by specifying case (es-
pecially in the case of a non-default word order), negation, pragmatic nuances or
by being part of an idiom. With this simplifying assumption, a context can be
meaningfully broken down into its substituent content words. Then, we aggregate
the pairwise semantic relatedness values between a particular target content word
and all content words occurring in the preceding context, perhaps taking the maxi-
mum or a weighted sum, to give the semantic relatedness between the target word
and its context. In the following analysis, we have chosen to take the maximum
over the pairwise semantic relatedness values to represent the relatedness of the
multiword context to the target word.

2.4.1 The effect of function words in the context
Theoretically, the semantic relatedness between a content and a function word
should be almost nonexistent, so one should be able to take a maximum over all
previous words in the context, not just previous content words. However, this
assertion does not necessarily hold for our semantic measures. We consider each
case separately in the following discussion.

13In linguistics, the terms ‘content word’ and ‘function word’ are used in an attempt to distin-
guish words that refer to a concept from words that serve a purely syntactic function. Clinical
observations of agrammatism [26] and semantic dementia [65] support the hypothesis that con-
tent words are processed and stored separately from function words. However, the distinction
between the two categories is not sharp at the token level; indeed, certain tokens serve as content
words in some contexts and function words in other contexts. This duality means that one cannot
discriminate between content and function words solely on the basis of syntactic category.

32

CHAPTER 2. SEMANTIC MEASURES

Web pointwise mutual information measure

Let us consider a pair of words where one of the words is a content word and
the other is a function word. We expect that the two words should distribute
independently, since the probability that a function word occurs in a document
should be roughly independent of the type of document. Mathematically, we can
rewrite the pointwise mutual information measure to reflect this:

PMIi j = log2

(
p(wi ∩wj)
p(wi)p(wj)

)
= log2

(
p(wi|wj)

p(wi)

)
= log2

(
p(wi)
p(wi)

)
= 0, (2.15)

where wi is a function word and wj is a content word. Thus, the pairwise mutual
information should be approximately zero. This seems to holds well in practice14,
meaning that we do not need to actively remove function words from considera-
tion when considering a multiword context.

Web conditional co-occurrence measure

We cannot assert that the presence of a content word will be independent of a pre-
ceding function word, since the exact form of the content word may be strongly
bound by morphosyntactic constraints. However, the probability of finding a spe-
cific function word in a document is likely to be many orders of magnitude larger
than that of the content word, meaning that the resulting conditional probability
will be of the order of magnitude of the probability of finding the content word,
which is generally small. Another way of stating this rationale is to say that con-
tent words are more independent of preceding function words than they are of
related preceding content words. The mathematical representation of this argu-
ment is as follows:

p(wj|wi) =
p(wi ∩wj)

p(wi)
∼ p(wj) since p(wj) � p(wi). (2.16)

If it is true that the target content word occurs far more often when preceded by
a related content word, then this relation will mask the presence of any function
word in the context, since then p(wj|wi) � p(wj). However, if there is no related
content word in the context, then it is possible that function words will provide a
significant amount of noise for this measure. Equivalently, to be able to ignore the
presence of function words, the maximum pointwise mutual information for each
target content word would need to be well above zero.

14For estimates derived from MSN, the ‘zero’ seems to be shifted upwards because of the in-
herent underestimation of frequencies when only a single search term is specified, as mentioned
in Section 2.1.3.

33

CHAPTER 2. SEMANTIC MEASURES

Since in this case, function words may prove to be a problem, it would be nice
to have an automatic way of distinguishing function words from content words.
With web-based estimates, the only straightforward way to attempt this is to filter
by raw occurrence frequency, which is obviously unsatisfactory. Another way of
dealing with function words is to filter them out using a stop-list, parser or hand
tagging, but these approaches detract from the automatised nature of the method.

We will include function words in our analysis when we use conditional prob-
ability as our measure, cognisant of the possibility that any results in the lower
probability ranges may well be overestimated.

LSA measure

The log odds weighting was specifically chosen to reduce the importance of to-
kens that occur in many documents, while emphasising those tokens that occur
in only a few documents. We obtain a simple statistical criterion to distinguish
words with high semantic content from those with low semantic content by apply-
ing the ∞-norm to each word vector. This criterion does not allow one to directly
map words into the categories of function and content words, but we would ex-
pect that function words have a low ∞-norm in comparison to content words. In
Figure 2.10, we see that points closer to the main diagonal, which represent vec-
tors that inherently have more nonzero elements, generally have a lower ∞-norm.
This property is not preserved by the dimension-reduction step of Singular Value
Decomposition, as can be seen in Figure 2.11. Thus, we use the ∞-norm obtained
before the application of the approximate Singular Value Decomposition tech-
nique as our measure of the semantic content of each token. We will refer to this
norm as the pre-SVD ∞-norm.

2.4.2 Graphical comparison and interpretation
Web pointwise mutual information measure

Our pointwise mutual information measure is plotted against predictability in Fig-
ure 2.12; in the plots, there seems to be no relationship between these two pa-
rameters. This finding is a little surprising, since we know that one can use the
pointwise mutual information measure to successfully find synonyms [64]. This
implies that a measure of synonymity, like that embodied in WordNet [24], is
unlikely to be useful in the generation of predictability values.

Web conditional co-occurrence measure

In Figure 2.13, we see the conditional probability that two words co-occur in a
web page plotted against predictability. The main feature visible in the plots is

34

CHAPTER 2. SEMANTIC MEASURES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

cos γ

P
re

−S
V

D
 ∞

−n
or

m

Effect of log odds weighting on the pre−SVD ∞−norm

Figure 2.10: Effect of log odds weighting on the ∞-norm of word vectors. Vectors are
parametrised on the horizontal axis by the cosine of their angle from the main diagonal.
The closer a vector is to the main diagonal, the more nonzero elements it must have.
We expect function words to have many nonzero elements, since they occur in many
documents. We can see that, in general, the log odds weighting reduces the ∞-norm for
words that occur in many documents relative those that only occur in a small number of
documents.

the spread of points at zero predictability: If the conditional probability is small
enough, we can be sure that the corresponding predictability value will be very
close to zero. Another way of stating this is as follows: Words that are totally
unrelated to their context are very likely to be unpredictable. The possible overes-
timation of the conditional co-occurrence probability mentioned in Section 2.4.1
does not change this relation at all—in fact, lower co-occurrence probabilities
would strengthen the effect.

The relation between co-occurrence conditional probability and predictability
is obviously not one-to-one, implying that a high semantic relatedness of this sort
is not sufficient to guarantee a high predictability. Actually, we would not expect
any simple relationship, since we believe that predictability reflects far more than
just semantic similarity.

LSA measure

A simple plot of the LSA measure against predictability for ‘content’ words can
be found in Figure 2.14. Bearing in mind that the LSA measure needs to be
above 0.37 to be significant at the 1% confidence level, we can see that there are
significantly fewer points in the lower right quadrant of the plot than elsewhere.

35

CHAPTER 2. SEMANTIC MEASURES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

cos γ

P
os

t−
S

V
D

 ∞
−n

or
m

Distribution of the ∞−norm after dimension reduction

Figure 2.11: Distribution of the ∞-norm of word vectors after application of approximate
Singular Value Decomposition. Vectors are parametrised on the horizontal axis by the
cosine of their angle from the main diagonal. It is now no longer true that there is a low
∞-norm for words that are near to the main diagonal.

This means that a low value of the LSA measure is almost sufficient to guarantee
a low predictability.

In the plot, we see a number of points for which the LSA measure is zero:
these represent the first content word of each sentence; under our simplistic as-
sumption, such words have no previous semantic context. The LSA measure is
totally uninformative in this case, and the predictability of these points must be
modelled in another way.

It is illuminating to study the cases that occur in the lower right quadrant (ex-
cepting those on the predictability axis); these represent content words that are
predictable but seem to be semantically unrelated to their context. There are two
reasons why there are cases where the predictability is larger than 0.1 and the LSA
measure smaller than 0.30:

1. The ZEIT corpus did not have the required semantic relationship because it
is too small, or

2. The content word occurs as part of an idiom.

As examples, the first reason seems to responsible for the low LSA value for the
word Matratze in the following sentence:

Die Kinder hüpften auf der alten Matratze herum.

36

CHAPTER 2. SEMANTIC MEASURES

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

12

14

predictability

G
oo

gl
e

po
in

tw
is

e
m

ut
ua

l i
nf

or
m

at
io

n

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

predictability

Y
ah

oo
! p

oi
nt

w
is

e
m

ut
ua

l i
nf

or
m

at
io

n

0 0.2 0.4 0.6 0.8 1
25

30

35

40

45

50

predictability

M
S

N
 p

oi
nt

w
is

e
m

ut
ua

l i
nf

or
m

at
io

n

Figure 2.12: Relationship of predictability to pointwise mutual information. The verti-
cal axes have been rescaled so that the resulting plots look similar. Pointwise mutual
information appears to be unrelated to predictability.

while the second reason accounts for the high predictability of the word Lot in
the following sentence:

Nach dem Streit schien alles wieder im Lot zu sein.

Cases of the first type can be addressed by using a larger training corpus, while
cases of the second type are better dealt with by considering word n-gram proba-
bility.

2.5 Chapter summary
We generate two web co-occurrence measures (pointwise mutual information and
conditional co-occurrence probability) and a measure derived from Latent Seman-
tic Analysis. Web-based measures are easy to collect, but are inherently noisy;
this noise is partly due to the nature of data on the Internet, but also partly due
to anomalies introduced by Internet search engines. The construction of the LSA
measure is a far more involved process, and although the source data is cleaner
than Internet data, noise is introduced in the use of a Monte Carlo estimation al-
gorithm; it is necessary to use such an an algorithm to overcome computational
limitations. A large amount of work was necessary to clean the source corpus and
convert it into an appropriate numerical format.

The interpretation of the LSA measure is not a simple task, since token vectors
exist in a high-dimensional space. The distribution of angles between vectors in
a high-dimensional space is inherently nonuniform. It is possible but not easy
to estimate this distribution empirically; alternatively, it may be possible to use

37

CHAPTER 2. SEMANTIC MEASURES

0 0.2 0.4 0.6 0.8 1
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

predictability

lo
g 10

 G
oo

gl
e

co
nd

iti
on

al
 c

o−
oc

cu
rr

en
ce

0 0.2 0.4 0.6 0.8 1
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

predictability

lo
g 10

 Y
ah

oo
! c

on
di

tio
na

l c
o−

oc
cu

rr
en

ce

0 0.2 0.4 0.6 0.8 1
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

predictability

lo
g 10

 M
S

N
 c

on
di

tio
na

l c
o−

oc
cu

rr
en

ce

Figure 2.13: Relationship of predictability to web conditional co-occurrence. Points with
a low conditional co-occurrence probability are very likely to have a low predictability
value. Note the lack of strict adherence to nonpositive values, especially in the case of
results from Google.

theoretical considerations to guess the form of the distribution, which may then
be used to interpolate the empirical results. Once an angle distribution has been
estimated, we are able to transform the LSA measure into a measure that can be
interpreted as a probability.

After generalising our pairwise measures to allow us to consider a multiword
context, we graphically compare our measures to predictability. The web point-
wise mutual information measure seems to be unrelated to predictability. How-
ever, the web conditional co-occurrence measure and the LSA measure show the
same distinctive pattern: low values of these measures indicate words with low
predictability.

38

CHAPTER 2. SEMANTIC MEASURES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

predictability

se
m

an
tic

 s
im

ila
rit

y

Figure 2.14: Relationship of predictability to the LSA measure. Only words with a pre-
SVD ∞-norm greater than 3.2 were included in the analysis leading to this graph. The
length of the error bars is twice the standard error. Points with a low conditional co-
occurrence probability are very likely to have a semantic similarity that is not significantly
different from chance. The points with zero semantic similarity correspond to the first
content word of each sentence.

39

Chapter 3

Word n-gram measures

In this chapter, we generate simple word n-gram measures and compare them to
predictability. These measures are simple to collect and do not suffer from issues
of sparsity, which is normally a problem for such measures.

3.1 Using a word n-gram model to capture short-
range structure

Simple computational implementations of statistical language models date back
to the 1970s; one early application of such models was to the area of speech
recognition [30]. Rosenfeld [55] gives a review of the major attempts to improve
the performance of statistical language models.

At the word level, the simplest of these models are word n-gram models, where
one attempts to model the probability of observing an n-word sequence in the
language. For example, a word 2-gram (or bigram) model attempts to specify the
probability of coming across a specific two-word sequence in the language, while
a word 3-gram (or trigram) model would deal with three-word sequences. More
complicated models may consider word bigram and word trigram probabilities
simultaneously, as well as looking for other local statistical patterns.

Goodman [27] combined various techniques commonly used in the creation
of statistical language models to look for synergies and conflicts between the dif-
ferent techniques; he focussed especially on the tradeoff between the complexity
of the model and the quality of the model fit. One important conclusion is that
English word n-gram models show an optimal fit for a rather small value of n,
between three and five. This result does not directly carry across to German, but
it suggests that it is sensible to use word n-gram models with a relatively small
value of n.

We limit ourselves here to using the raw word bi- and trigram probabilities

40

CHAPTER 3. WORD N-GRAM MEASURES

derived from the World Wide Web as our measures of short-range relatedness. We
backoff zero bigram probabilities naïvely to the unigram probability, and backoff
trigram probabilities in a similar way. In the following discussion, we justify the
validity of such a simple measure.

3.1.1 Training text effects
The traditional method of training statistical language models is to use a standard
(and usually clean) training text corpus, derive all required statistics based on it,
and then smooth the raw probabilities to account for unseen word patterns.

The resulting statistical language model suffers from a number of intrinsic
biases, including those of content and style. These biases can often render the
derived model useless for the required application, sometimes quite obviously,
and sometimes rather subtly. For instance, it is obvious that if one wanted to
build a language model of modern language, it would be nonsense to train the
model on the writings of Shakespeare. However, it can also be just as nonsensical,
though not nearly as obvious, to train a language model of spoken language on
only written texts. Some researchers attempt to circumvent problems of bias by
using a ‘balanced’ corpus, where texts are drawn from many different sources.

Banko and Brill [7] studied the effect of the size and content of the training
text on the performance of the resulting language model. They concluded that
an increase in size of the training text improves the performance of the language
model. However, Rosenfeld et al [56] highlight the need for in-domain training
data: the addition of large amounts of out-of-domain training data to a small in-
domain training set improves model performance by a disproportionately small
percentage.

3.1.2 The problem of sparse data
The great majority of words occur very infrequently, with the frequency distri-
bution approximately following Zipf’s law [69, 57, 41]. This means that most
sequences of words that one wants to analyse with a language model will never
have occurred in the training text. This problem is known as the “sparse data
problem”, and is a pure consequence of the combinatorial explosion of possibil-
ities with which words can be combined. This problem is particularly marked
when one deals with word n-gram models with high values of n.

One standard way to deal with the sparsity of training data is to use a smooth-
ing algorithm to guess the probability of unseen word patterns, based on the sta-
tistical properties of those patterns actually seen. Goodman [27] mentions a num-
ber of common smoothing techniques and shows that Interpolated Kneser-Ney

41

CHAPTER 3. WORD N-GRAM MEASURES

smoothing performs well; in addition, he provides a theoretical argument to pre-
fer this particular smoothing technique over others.

Another way to deal with sparse training data is to increase the size of the
training corpus to increase the chance that the word pattern will have been present
during training. Keller [31] found that a substantial increase in the size of the
training text seems to override problems of noisy data, even data as noisy as that
found on the Internet.

In practice, most clean corpora (and in particular, the ZEIT corpus) are far too
small to give a comprehensive set of estimates of word trigram frequencies, even
when smoothed, although their coverage of unigram and bigram word frequencies
may be reasonably good. This implies that one has no choice but to rely, at least
in part, on Internet-based frequency estimates. We rely solely on the size of the
Internet to deal with the sparsity issue. Note that the problems mentioned previ-
ously in Section 2.1.3, which were to do with deriving Internet-based frequency
estimates from search engines, also need to be taken into consideration here.

3.1.3 Cross-validation of web frequency estimates
To check the validity of web frequency estimates, we compared them to frequency
norms derived from the DWDS Kerncorpus [3], which is a balanced corpus made
up of literature, journalistic prose, subject-specific prose, technical documentation
and transcribed speech. Figures 3.1, 3.2 and 3.3 show the comparisons of word
unigram, bigram and trigram frequencies respectively. In general, the web esti-
mates agree with the DWDS norms for high frequencies, where we would expect
that the DWDS corpus does not suffer from problems of sparsity. However, the
estimates obtained from the Google and Yahoo! APIs have an artificial gap in the
frequency band from 103 to 104, as noted in Section 2.1.3.

3.2 Comparison of word n-gram probabilities to pre-
dictability

Figure 3.4 shows plots of word bi- and trigram probability against predictability.
It is evident that word n-grams that are very uncommon are also very likely to
be unpredictable. Word trigram probability seems to be a slightly better predictor
than word bigram probability, since the word trigram probability plots show a
more pronounced positive trend than the word bigram probability plots. However,
it is clear that word n-gram probability only captures a small part of predictability.

42

CHAPTER 3. WORD N-GRAM MEASURES

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

log
10

 DWDS frequency

lo
g 10

 G
oo

gl
e

fre
qu

en
cy

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

log
10

 DWDS frequency

lo
g 10

 Y
ah

oo
! f

re
qu

en
cy

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

log
10

 DWDS frequency

lo
g 10

 M
S

N
 fr

eq
ue

nc
y

Figure 3.1: Comparison of web word frequency estimates to DWDS word frequency
norms. The web norms are roughly in agreement with those derived from the DWDS
corpus, with the Google norm giving the best agreement.

Looking more carefully at the cases in the lower right quadrant, which rep-
resent highly predictability words that do not occur often after the previous one
or two words, we note that the target word is highly semantically related to its
context. This is clearly visible in the following sentence, where Kraftstoff is
highly predictable, but has a low probability of occurrence given the one or two
preceding words as context:

Sogar aus Raps läßt sich Kraftstoff herstellen.

The relationship here of Kraftstoff to Raps is better detected by using a
semantic similarity measure.

3.3 Chapter summary
Simple word n-gram probabilities derived from the Internet serve as our measures
of short-range relatedness. The sheer size of the Internet allows us to substantially
reduce the problem of sparsity, meaning that there is less need to smooth the raw
probabilities. If a two- or three-length sequence of words occurs very improbably,
then the last word of the sequence very probably has a low value of predictability.

43

CHAPTER 3. WORD N-GRAM MEASURES

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

log
10

 DWDS word bigram frequency

lo
g 10

 M
S

N
 w

or
d

bi
gr

am
 fr

eq
ue

nc
y

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

log
10

 DWDS word bigram frequency

lo
g 10

 Y
ah

oo
! w

or
d

bi
gr

am
 fr

eq
ue

nc
y

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

log
10

 DWDS word bigram frequency

lo
g 10

 G
oo

gl
e

w
or

d
bi

gr
am

 fr
eq

ue
nc

y

Figure 3.2: Comparison of web word bigram frequency estimates to DWDS word bigram
frequency norms. For high word bigram frequency estimates, the web norms are roughly
in agreement with those derived from the DWDS corpus. The sparsity of the DWDS
corpus in comparison with the web norms is clearly visible. Note the anomalous lack of
points with frequency between 103 and 104 in the Google and Yahoo! estimates.

0 1 2 3 4
0

1

2

3

4

5

6

7

log
10

 DWDS word trigram frequency

lo
g 10

 M
S

N
 w

or
d

tri
gr

am
 fr

eq
ue

nc
y

0 1 2 3 4
0

1

2

3

4

5

6

7

log
10

 DWDS word trigram frequency

lo
g 10

 Y
ah

oo
! w

or
d

tri
gr

am
 fr

eq
ue

nc
y

0 1 2 3 4
0

1

2

3

4

5

6

7

log
10

 DWDS word trigram frequency

lo
g 10

 G
oo

gl
e

w
or

d
tri

gr
am

 fr
eq

ue
nc

y

Figure 3.3: Comparison of web word trigram frequency estimates to DWDS word trigram
frequency norms. For high word trigram frequency estimates, the web norms are roughly
in agreement with those derived from the DWDS corpus. The sparsity of the DWDS
corpus in comparison with the web norms is clearly visible. Note the anomalous lack of
points with frequency between 103 and 104 in the Google and Yahoo! estimates.

44

CHAPTER 3. WORD N-GRAM MEASURES

0 0.2 0.4 0.6 0.8 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

predictability

lo
g 10

 G
oo

gl
e

bi
gr

am
 p

ro
ba

bi
lit

y

0 0.2 0.4 0.6 0.8 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

predictability

lo
g 10

 Y
ah

oo
! b

ig
ra

m
 p

ro
ba

bi
lit

y

0 0.2 0.4 0.6 0.8 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

predictability

lo
g 10

 M
S

N
 b

ig
ra

m
 p

ro
ba

bi
lit

y

0 0.2 0.4 0.6 0.8 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

predictability

lo
g 10

 G
oo

gl
e

tri
gr

am
 p

ro
ba

bi
lit

y

0 0.2 0.4 0.6 0.8 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

predictability

lo
g 10

 Y
ah

oo
! t

rig
ra

m
 p

ro
ba

bi
lit

y

0 0.2 0.4 0.6 0.8 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

predictability

lo
g 10

 M
S

N
 tr

ig
ra

m
 p

ro
ba

bi
lit

y

Figure 3.4: Relationship of predictability to word n-gram probability. For this plot, we
backoff zero probabilities. Points with a low word n-gram probability are likely to have a
low predictability value.

45

Chapter 4

Semantic and word n-gram
measures combined

We have seen that neither the semantic nor the word n-gram measures are enough
on their own to generate predictability values. The data support the hypothesis that
both semantics and local relationships (as captured by word n-grams) contribute
to predictability. The obvious next step is to determine whether a combination of
the two types of measures capture enough information to generate good estimates
of predictability.

4.1 Combination of web measures
In Figure 4.1, we can see the relationship of predictability to the web word n-
gram measure (with a backoff of zero probabilities) and the web conditional co-
occurrence measures. Note that the bigram and conditional co-occurrence mea-
sures are related by an inequality, since the occurrence of a word bigram implies
that the two words co-occur. For the results from the Google and Yahoo! APIs,
there is an obvious correlation between the measures following this inequality,
while those obtained from the MSN API show a far less pronounced relationship.
A lack of correlation implies that the two measures carry different information,
and thus that they help in different ways to distinguish words that have a high
and a low predictability. This is evident in the plots: In the Google and Yahoo!
cases, the web conditional co-occurrence measure seems to carry little additional
information, while in the MSN case, the two measures seem to both contribute
important information allowing one to distinguish high from low predictabilities.

To assess quantitatively how well our web word n-gram and conditional co-
occurrence measures model predictability, we can divide predictabilities into two
categories: ‘high’ (greater than 0.02) and ‘low’ (less than 0.02). If our measures

46

CHAPTER 4. SEMANTIC AND WORD N-GRAM MEASURES COMBINED

−10 −8 −6 −4 −2 0 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log
10

 Google bigram probability

lo
g 10

 G
oo

gl
e

co
nd

iti
on

al
 c

o−
oc

cu
rr

en
ce

−10 −8 −6 −4 −2 0 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log
10

 Yahoo! bigram probability

lo
g 10

 Y
ah

oo
! c

on
di

tio
na

l c
o−

oc
cu

rr
en

ce

−10 −8 −6 −4 −2 0 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log
10

 MSN bigram probability

lo
g 10

 M
S

N
 c

on
di

tio
na

l c
o−

oc
cu

rr
en

ce
−10 −8 −6 −4 −2 0 2

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log
10

 Google trigram probability

lo
g 10

 G
oo

gl
e

co
nd

iti
on

al
 c

o−
oc

cu
rr

en
ce

−10 −8 −6 −4 −2 0 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log
10

 Yahoo! trigram probability

lo
g 10

 Y
ah

oo
! c

on
di

tio
na

l c
o−

oc
cu

rr
en

ce

−10 −8 −6 −4 −2 0 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log
10

 MSN trigram probability

lo
g 10

 M
S

N
 c

on
di

tio
na

l c
o−

oc
cu

rr
en

ce
0.01

0.02

0.05

0.1

0.22

0.46

1

Figure 4.1: Relationship of predictability to web word n-gram and conditional co-
occurrence measures. Points are coloured according to predictability, where the specific
colour, shown on the colour bar, is determined by logarithmic interpolation between the
two extremes.

are to make sense, high values of our n-gram and conditional co-occurrence mea-
sures should imply high predictabilities, while low values of the same measures
should imply low predictabilities; if these inferences hold for a particular word,
we will say that the word has been correctly classified. When one measure is high
and the other is low, we will say that the resulting predictability remains unclassi-
fied. We are left to choose where our predictive measures should transition from
‘high’ to ‘low’; in the following analysis, we choose transition points to maximise
the number of correctly classified cases.

For the three cases using web word bigram probability and web conditional
co-occurrence probability, about 62% of the predictability values can be correctly
classified, 15% remain unclassified, and the remaining 23% are incorrectly classi-
fied. Using the web word trigram probability and web conditional co-occurrence
probability, about 58% can be correctly classified, while about 23% are unclassi-
fied, leaving 19% incorrectly classified.

47

CHAPTER 4. SEMANTIC AND WORD N-GRAM MEASURES COMBINED

To see what such results really mean, we also consider a reference case where
the two predictors are not at all correlated with predictability. In this case, the per-
centage of cases classified correctly will equal the percentage of cases classified
incorrectly. In this case, even if a word has been classified, we only have a 50%
chance that the classification is correct. Using the combination of a web word
n-gram measure and a web conditional co-occurrence probability, we have about
75% chance that a classified word has been correctly classified.

4.2 Combination of the web co-occurrence and the
LSA measures

After replacing the web co-occurrence measure with the LSA measure, we obtain
the plots shown in Figure 4.2. We apply the same quantitative analysis as the
previous section, ignoring those words (mostly function words) where the LSA
measure equals zero. The combination of a web word bi- or trigram measure with
the LSA measure allows correct classification of roughly 55% of the predictability
values, while about 27% remain unclassified, leaving us with 18% incorrectly
classified.

From Section 2.2.6, we know that it makes sense to transform the raw LSA
measure to an equivalent p-value via the empirical distribution of random vectors
in our semantic space. After we transform the vertical axis (see Figure 4.3), we
see a similar pattern to that seen with the web-based conditional co-occurrence
estimates. The two measures appear to independently separate high from low
predictability points. Unfortunately, there is an artifical lower cutoff visible on
these graphs, caused by the limited number of random pairs of vectors sampled to
generate the empirical distribution discussed in Section 2.2.6; if we had sampled
more random pairs, it would have been possible to assign smaller p-values to high
semantic similarity values. However, the plots suggest that we would need to
sample many more random pairs (or guess an analytical distribution) to obtain a
meaningful range of p-values.

Neither of the combinations of the short-range and semantic measures fully
separate high from low predictability points, implying that these simple measures
used alone cannot be used to perfectly model predictability. However, the fact
that the clouds of high and low predictability points do not fully lie on top of each
other implies that these measures do capture significant elements of predictability.

48

CHAPTER 4. SEMANTIC AND WORD N-GRAM MEASURES COMBINED

−10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

 Google bigram probability

se
m

an
tic

 s
im

ila
rit

y

−10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

 Yahoo! bigram probability

se
m

an
tic

 s
im

ila
rit

y

−10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

 MSN bigram probability

se
m

an
tic

 s
im

ila
rit

y
−10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

 Google trigram probability

se
m

an
tic

 s
im

ila
rit

y

−10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

 Yahoo! trigram probability

se
m

an
tic

 s
im

ila
rit

y

−10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

 MSN trigram probability

se
m

an
tic

 s
im

ila
rit

y
0.01

0.02

0.05

0.1

0.22

0.46

1

Figure 4.2: Relationship of predictability to the web word n-gram measure and the LSA
measure. Points are coloured according to predictability, where the specific colour, shown
on the colour bar, is determined by logarithmic interpolation between the two extremes.

4.3 Chapter summary
The semantic and word n-gram measures capture different aspects of predictabil-
ity, but the combination is not sufficient to fully describe predictability.

49

CHAPTER 4. SEMANTIC AND WORD N-GRAM MEASURES COMBINED

−10 −8 −6 −4 −2 0 2
−3

−2.5

−2

−1.5

−1

−0.5

0

log
10

 Google bigram probability

lo
g 10

 p
−v

al
ue

−10 −8 −6 −4 −2 0 2
−3

−2.5

−2

−1.5

−1

−0.5

0

log
10

 Yahoo! bigram probability

lo
g 10

 p
−v

al
ue

−10 −8 −6 −4 −2 0 2
−3

−2.5

−2

−1.5

−1

−0.5

0

log
10

 MSN bigram probability

lo
g 10

 p
−v

al
ue

−10 −8 −6 −4 −2 0 2
−3

−2.5

−2

−1.5

−1

−0.5

0

log
10

 Google trigram probability

lo
g 10

 p
−v

al
ue

−10 −8 −6 −4 −2 0 2
−3

−2.5

−2

−1.5

−1

−0.5

0

log
10

 Yahoo! trigram probability

lo
g 10

 p
−v

al
ue

−10 −8 −6 −4 −2 0 2
−3

−2.5

−2

−1.5

−1

−0.5

0

log
10

 MSN trigram probability

lo
g 10

 p
−v

al
ue

0.01

0.02

0.05

0.1

0.22

0.46

1

Figure 4.3: Relationship of predictability to the web word n-gram measure and the La-
tent Semantic Analysis p-value. Points are coloured according to predictability, where the
specific colour, shown on the colour bar, is determined by logarithmic interpolation be-
tween the two extremes. The artificial lower p-value boundary is an artefact of the limited
number of random word pairs sampled to generate an estimate of the p-value.

50

Chapter 5

Reversing SWIFT to test its lexical
processing component

In this chapter, we detail a method to deduce the lexical processing component
of a reading model, SWIFT, by using real eye movement data. In particular, we
examine the role of predictability, and consider whether it is possible for other
measures to take its place.

5.1 What is SWIFT?
SWIFT1 is a mathematical model of eye movement control based on experimental
and neurophysiological findings. The latest version, referred to as SWIFT-II [23],
is an evolved version of the original SWIFT model [22], which I will refer to as
SWIFT-I.

For each input sentence, SWIFT requires a number of parameters to be spec-
ified for each word—these parameters allow the model to ‘recognise’ important
word features such as length and difficulty. After a number of internal ‘subject-
specific’ parameters have been chosen, SWIFT generates a sequence of fixations
and saccades. Figure 5.1 shows a schematic diagram of SWIFT.

5.2 Implementations of lexical processing
A number of methods have been used to allow lexical features to modulate the be-
haviour of eye movement models. We outline the lexical processing schemas used
in SWIFT-II and SWIFT-I in order to motivate the Reverse SWIFT methodology
described in Section 5.3. In addition, we propose a number of other possible ways

1Autonomous Saccade-generation With Inhibition by Foveal Targets

51

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

parameters
subject

SWIFTword
parameters

simulated
sequence of

fixations

Figure 5.1: Block diagram of SWIFT

of combining word lexical features into a measure of lexical difficulty. These
proposals will be tested in Section 5.4.

5.2.1 SWIFT-II
In SWIFT-II, the frequency2 of word n (fn) determines the required lexical pro-
cessing of word n (LII

n ; here, the superscript indicates the version of the SWIFT
model) in the following way:

LII
n = α

(
1+β

ln fn

F

)
(5.1)

where α and β are subject-specific parameters, and F is a normalisation constant.
Simplistically, if the amount of lexical processing for word n exceeds LII

n , then this
word is considered to have been completely processed. A sentence is considered
to be completely processed when each word in it has been completely processed.

One of the important principles that distinguishes SWIFT from other eye
movement models is its assumption of parallel processing of words that are present
in the visual field. This is seen in the model as an asymmetrical spatial distribution
of lexical processing about the fixation point. Two half-Gaussian functions with
differing standard deviations (σL and σR) are used to capture the decrease of letter
processing rate (λ) with increasing visual eccentricity (ε). Letter processing rate
is normalised so that the total amount of processing (area underneath the function)
equals one. The definition of λ is as follows:

λ (ε) =

√
2
π

1
(σR +σL)

exp
(
− ε2

2σ 2

)
with

{
σ = σL, if ε < 0
σ = σR, if ε ≥ 0 . (5.2)

Figure 5.2 shows this function with the most recent estimated values of σL and σR
[23].

2The CELEX word frequency norms [6] are used in the SWIFT-II paper. To allow comparison,
we will adopt these norms in the first part of our analysis.

52

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

−8 −6 −4 −2 0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

visual eccentricity (letters)

le
xi

ca
l p

ro
ce

ss
in

g
ra

te
 (u

ni
ts

/m
s)

Figure 5.2: Lexical processing rate function with parameter values of σL = 2.41 and
σR = 3.74.

Word processing rate (λn) is calculated as a parametrised weighted average of
the processing rate of all letters in the word:

λn(t) =
1

(Mn)η

Mn

∑
j=1

λ (εn j(t)), (5.3)

where Mn is the number of letters in word n, and η is a parameter between 0 and
1. Ignoring the Gaussian noise that is subsequently added to include the stochastic
nature of word processing, λn(t) is a piecewise constant function. At some time
ta, we consider that word n has been completely processed3 if

∫ ta

0
(1+θ pn)λn(t)≥ LII

n , (5.4)

where pn is the Cloze predictability of word n, and θ is a subject-specific param-
eter.

3This is equivalent to the lexical completion phase detailed in the SWIFT-II paper [23]; the
negligible global decay process (represented by parameter ω) has been excluded. We choose to
ignore the preprocessing phase, which determines saccade targeting, because the large size of
the preprocessing factor (parameter f) ensures that the amount of lexical processing required for
preprocessing will always be much less than the amount required for lexical completion.

53

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

Taking into account that λn(t) is piecewise constant and using definitions (5.1)
and (5.3), we can rewrite condition (5.4) for the case where the subject has finished
reading the sentence after N fixations:

∀n,
N

∑
i=1

Mn

∑
j=1

diλ (εn j)|i ≥ α
(

1+β
ln fn

F

)(
1

1+θ pn

)
(Mn)η , (5.5)

where di is the duration of fixation i, and λ (εn j)|i is the amount of lexical process-
ing on letter j of word n during fixation i.

5.2.2 SWIFT-I
In SWIFT-I, predictability, instead of modulating lexical processing rate directly,
is found in the formula for required lexical processing:

LI
n = (α −β ln fn)(1−θ pn), (5.6)

where α , β and θ are subject-specific parameters. The criterion for complete
lexical processing of a word, analogous to equation 5.4, is:

∫ ta

0
λn(t)≥ LI

n (5.7)

For the case where the subject has finished reading the sentence after N fixations,
we can rewrite this as

∀n,
N

∑
i=1

Mn

∑
j=1

diλ (εn j)|i ≥ (α −β ln fn)(1−θ pn)(Mn)η . (5.8)

Note that this condition is equivalent to taking the first-order Taylor expansion of
condition (5.5), the condition used in SWIFT-II, about p = 0.

5.2.3 Additive form
One proposal, following Rayner, Ashby, Pollatsek and Reichle [51], is to combine
predictability and frequency in an additive manner. Translating this to the SWIFT-
II framework, we end up with the following condition:

∀n,
N

∑
i=1

Mn

∑
j=1

diλ (εn j)|i ≥ (α −β ln fn −θ pn)(Mn)η . (5.9)

54

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

5.2.4 Other possibilities
Following the lead of the statistical analysis of Kliegl, Nuthmann and Engbert
[34], we could use a logit transformation4 on the raw predictability values. Al-
ternatively, we could take the logarithm of predictability or code predictability as
a binary variable; the utility of a specific transformation should help us with the
interpretation of predictability as a cognitive parameter. In addition, we have the
option to altogether abandon the corpus word frequency and Cloze predictability
parameters, replacing them with the web word frequency, web word n-gram and
corpus-based semantic similarity measures derived in Chapters 2 and 3.

We will take a cursory look at these alternatives in Section 5.6 to determine
whether it might be useful to use these in a lexical processing function.

5.3 The Reverse SWIFT method
Every sequence of fixations found in a sentence-reading eye-tracking experiment
should reflect something about the sentence read. A word fixated more than once
may be somehow ‘difficult’ to process—perhaps it is long, uncommon or unex-
pected given the previous sentence context. Conversely, a skipped word is likely
to be somehow ‘easy’ to process—it may be short, have little semantic content or
occur extremely frequently. In SWIFT, such considerations are taken into account
in the lexical processing component, described above in Section 5.2. However, it
is not at all clear that the current way of calculating the “lexical difficulty” param-
eter is a correct representation of word lexical difficulty for SWIFT, especially
since SWIFT is a complex dynamical model.

There are many ways that one might validate SWIFT5. A typical way to val-
idate the SWIFT model is to compare the properties of its generated fixation se-
quences with those of real eye movement data. One typical comparison is plotted
in the SWIFT-II paper by Engbert, Nuthmann, Richter and Kliegl [23], showing

4The raw logit function as taken from Cohen and Cohen [15] is defined as logit pn =
0.5ln[pn/(1− pn)]. However, our predictability values are derived from the responses of only
about 80 subjects, meaning that they include the boundary values of zero and one. Our arbitrary
method of dealing with this problem, mentioned by Cohen and Cohen, is to "replace p = 0 by
p = 1/(2v) and p = 1 by (2v− 1)/(2v)", where v is the denominator of the counted fraction (in
our case, v ≈ 80). Another way of dealing with the zero values is to use a backoff strategy such
as Katz smoothing [27], but this reduces the independence of the predictability and the frequency
estimates.

5Pitt [48] divides methods for the validation of models into local versus global and quantitative
versus qualitative. Using this classification, Engbert [21] stated that global methods of valida-
tion are being neglected, and showed an example of applying global methods to the validation of
SWIFT. However, he also mentioned that researchers regularly conduct local methods of valida-
tion, including goodness-of-fit, sensitivity analysis, cross-validation and hypothesis testing.

55

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

the variation of fixation duration (both real and simulated) with the frequency,
predictability and length for the current, previous and next word; the nine plots
correspond to nine possible goodness of fit statistics. These goodness of fit statis-
tics could be used to choose between alternative proposals for lexical processing,
but an improvement in one of these statistics is often accompanied by a worsen-
ing in another statistic. In addition, the inherent stochasticity of SWIFT leads to a
certain amount of noise in the goodness of fit statistics.

We will explore another way of validating SWIFT, which is designed to specif-
ically focus on the “lexical difficulty” parameter that is input to SWIFT. We will
refer to this method as Reverse SWIFT; the method is effectively solving an in-
verse problem [61] of SWIFT. The idea of the Reverse SWIFT method (see Fig-
ure 5.3) is to assume that real experimental data is the result of the SWIFT model.
From this data, we deduce the total lexical activation for each word, which should
be related to the required lexical activation values. Then, we can test whether
these total lexical activation values are related to the underlying lexical features.

SWIFT sequence of
fixations

experimental

parameters
subject

estimated

compatible
range of

parameters
word

Figure 5.3: Block diagram of Reverse SWIFT

The Reverse SWIFT method requires one to estimate or select a few certain
subject-specific parameters—these determine the shape and width of the lexical
processing function. For simplicity, we will use the form of this function fitted in
the SWIFT-II paper [23], which is supposed to represent an average subject.

It is important to note that the Reverse SWIFT method may not directly give a
set of input parameters for SWIFT. Even though results from Reichle and Laurent
[52] suggest that a skilled reader may be able to anticipate the amount of time
required to process a word and thus program saccades to reduce ‘unnecessary’
fixation time, experimental data will still give a consistent overestimate of the
amount of processing required for each word because subjects do not only look
at a word for the minimal time required. This overestimation means that total
lexical processing (Tn), which we define in Section 5.3.1, will always be greater
than required lexical processing (Ln).

56

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

5.3.1 An example of the Reverse SWIFT method
Imagine that an experimental subject reading the sentence

Den Ton gab der Künstler seinem Gehilfen.

has produced the following sequence of fixations:

position (letters) 1 9 20 30
duration (ms) 192 168 160 180

where letter position 1 is the first letter of the sentence.
Let us assume that our subject is an ‘average’ subject, with a lexical processing

function as postulated in the SWIFT framework, and with a ‘normal’ visual span:

Parameter Symbol Value
visual span, right σR 3.74
visual span, left σL 2.41

We calculate the cumulative sum of ∑Mn
j=1 diλ (εn j(t))|i for each fixation, which

represents the cumulative value of the lexical processing for each word:

Fixation 1 Den Ton gab der Künstler seinem Gehilfen
70.5 31.1 4.6 0.1 0 0 0

Fixation 2 Den Ton gab der Künstler seinem Gehilfen
71.9 62.1 66.3 27.4 4.4 0 0

Fixation 3 Den Ton gab der Künstler seinem Gehilfen
71.9 62.1 66.3 31.0 133.3 13.4 0

Fixation 4 Den Ton gab der Künstler seinem Gehilfen
71.9 62.1 66.3 31.0 134.8 114.0 54.5

where fixated letters are shown in boldface.
We give this final cumulative sum vector the name total lexical activation and

denote it Tn. For this particular example,

Tn = (71.9,62.1,66.3,31.0,134.8,114.0,54.5).

This total lexical activation is what interests us, since it should contain the effects
of word lexical features on lexical processing. Note that this vector is exactly the
quantity ∑N

i=1 ∑Mn
j=1 diλ (εn j)|i on the left hand side of each of the final conditions

in Section 5.2.

57

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

5.4 Relating total lexical activation to word lexical
features

5.4.1 Data
In the initial analysis, eye movement data for subjects reading the Potsdam Sen-
tence Corpus [33] were taken from the Kliegl group; Kliegl, Nuthmann and Eng-
bert [34] have reported on the properties of this data set.

5.4.2 Initial inspection
We start with a cursory visual inspection of the data to detect obvious non-linear
trends; we plot the median final lexical activation value for each word6 against the
variables of word length, CELEX word frequency and Cloze predictability (see
Figure 5.4). Of course, these variables are highly interdependent; plots including
more than one variable simultaneously are shown in Figures 5.5 and 5.6.

0 1 2 3 4 5
0

100

200

300

400

500

600

700

log frequency

to
ta

l a
ct

iv
at

io
n

0 5 10 15 20
0

100

200

300

400

500

600

700

length

to
ta

l a
ct

iv
at

io
n

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

predictability

to
ta

l a
ct

iv
at

io
n

Figure 5.4: Median total lexical activation as a function of CELEX word frequency, length
and predictability.

SWIFT-II’s lexical activation model, given in condition (5.5), would be consis-
tent with a continuous almost-linear gradient of lexical activation between those
words that are long and have low frequency and predictability, and those words
that are short and have high frequency and predictability. However, it is quite clear
that this does not hold along the predictability axis; instead, we see that words with
very high total activation will probably have a predictability value close to zero,
but words with a moderate total activation could have any predictability value.

6Note that we assume an ‘average’ reading span by selecting appropriate values of σR and σL.

58

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

word length

lo
g

fre
qu

en
cy

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

word length

pr
ed

ic
ta

bi
lit

y

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log frequency

pr
ed

ic
ta

bi
lit

y

50

100

150

200

250

300

350

Figure 5.5: Median total lexical activation as a function of CELEX word frequency, length
and predictability, taken pairwise. The colour scale denotes the amount of total lexical
processing, with the minimum (Tn = 30) coded as blue, while the 99th percentile (Tn =
350) is coded as red.

5.4.3 Fitting the data to the proposed models
We now assess the appropriateness of each of the proposed lexical activation mod-
els by fitting our total lexical activation values according to the final conditions
given in Section 5.2. The fitted functions are shown in Table 5.1; robust7 regres-
sion was performed using the rlm function in the R environment [1], with recoding
as necessary to eliminate nonlinear elements from the equations.

A simple robust regression analysis of log word length vs log total activation
suggests a value of 0.900 (standard error 0.002) for the exponent η . This value is
significantly different from the extremes of η = 0 and η = 1, which gives support
to the postulate found in SWIFT-II that the exponent should be an intermediate
value [23]. However, it is also significantly different to the η = 0.448 value ob-
tained for SWIFT-II through the use of a genetic algorithm; this is not surprising,
since the estimation of parameters in SWIFT-II is dependent on many factors, not
just fixation durations.

It is clear that η , the exponent governing how word activation is derived from
letter activation, is a far more important factor than the form of the lexical process-
ing function. In addition, there is no evidence to suggest that the lexical processing
function should have an additive form: the SWIFT-II lexical processing formula
does not perform worse than either the SWIFT-I or the additive forms with the
two tested values of η .

Given a specific value of η , the different forms of the lexical processing func-

7A robust regression is necessary because of the fact that fixation durations follow a gamma
distribution, and this means that our total lexical activation measure is also far from being normally
distributed.

59

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

0

1

2

3

4

5

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

word length log freq

pr
ed

50

100

150

200

250

300

350

Figure 5.6: Median total lexical activation as a function of CELEX word frequency, length
and predictability, shown simultaneously. The colour scale denotes the amount of total
lexical processing, with the minimum (Tn = 30) coded as blue, while the 99th percentile
(Tn = 350) is coded as red.

tion have very similar coefficients for frequency and word length, which reflects
the fact that the fit of the equations is dominated by data points that have low
predictability; when p = 0, there is no difference between the different proposals.

5.5 Another look at the form of the lexical process-
ing function

So far, there has been little to distinguish the different proposed forms of the
lexical processing formula. Ideally, we would like to vary each parameter in the
equation independently and see the effect on the subsequent experimental reading
pattern. However, it is not so easy to do this, since all word parameters are highly
correlated with each other. There are a number of ways that one might try to
manipulate lexical parameters; two ways are to:

• Swap individual words in a sentence, aiming to manipulate word parameters
directly.

• Have subjects read the same group of sentences many times.

A problem with the first approach is that even a small change in a sentence may af-
fect predictability values for the entire sentence fragment that follows the change.

60

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

proposal η fit SS
original 0.448 64(1−0.20ln fn)

(
1

1+0.11pn

)
(Mn)0.448 —

SWIFT-II 0.448 106(1−0.040ln fn)
(

1
1+0.37pn

)
(Mn)0.448 2.639e9

SWIFT-I 0.448 106(1−0.041ln fn)(1−0.27pn)(Mn)0.448 2.641e9
Additive 0.448 105(1−0.039ln fn −0.21pn)(Mn)0.448 2.646e9

SWIFT-II 0.900 39(1−0.004ln fn)
(

1
1+0.31pn

)
(Mn)0.900 2.512e9

SWIFT-I 0.900 39(1−0.005ln fn)(1−0.24pn)(Mn)0.900 2.513e9
Additive 0.900 39(1−0.004ln fn −0.24pn)(Mn)0.900 2.514e9

Table 5.1: The original lexical processing function used in SWIFT-II, and different fits of
total lexical activation using the proposed lexical processing functions. The fourth column
shows the sum of squares residual left over after fitting.

In addition, a large number of subjects are required in order to distinguish inter-
subject differences from the particular effects of interest. However, it theoretically
allows for a careful control of word parameters at the target word. In contrast, the
rereading approach aims to increase predictability (and possibly frequency) val-
ues for most words in the sentences, but it is not clear exactly how these values
should change quantitatively with repeated presentation. The major advantage of
the rereading approach is that each subject generates an independent set of data,
each of which should contain the effects of interest, allowing for the reduction of
the effects of intersubject variability in a subsequent analysis.

We will test the different forms of the lexical processing formula with reread-
ing data, with the motivation that the form of the formula should not need to
change for this slightly unusual, but not abnormal, reading paradigm.

5.5.1 Rereading paradigm
In this study, eighteen subjects were asked to read the first thirty-two sentences
from the Potsdam Sentence Corpus [33] a total of fifteen times; these were di-
vided up into three sessions on different days, where each session consisted of
five blocks of presentations of the thirty two sentences. It is important to note that
subjects were told that they would be asked to reproduce the sentences that they
had read at the end of each session8. The fact that recall improved across the ses-
sions shows that subjects were successfully learning the sentences that they had
read. The rereading data was collected by Kern for her Diplomarbeit [32], under
the supervision of Kliegl. The study was carried out to see whether it is possi-

8Subjects were given the initial two or three words of each sentence as a cue.

61

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

ble to manipulate the effect of frequency and predictability on eye movements by
allowing subjects to read the same text material many times.

Kern found a characteristic pattern of differences in the way subjects read
familiar material: shorter total fixation time, shorter average fixation duration, in-
creased saccade length, less fixations, less refixated words, more skipped words.
Such a pattern implies that the text becomes less difficult with increased famil-
iarity. Kern did not, however, map these results quantitatively to frequency and
predictability, and the outcome of such an exercise would be conditional on the
choice of the computational model used to generate eye movements from word
lexical features.

In the forthcoming analysis, we will only consider the eye movement traces
for the last (i.e. fifteenth) presentation.

5.5.2 Fitting rereading data to the proposed models
Similar to Section 5.4.3, we fit the total lexical activation of the rereading data
with the proposed forms of the lexical processing formula. Table 5.2 shows the
fitted functions. Again, we see that η is far more important than the form of the
fit. Even with the manipulation of predictability, there seems to be little evidence
to prefer one of the proposed forms of the lexical processing function to another.

proposal η fit SS
SWIFT-II 0.448 73(1−0.028ln fn)

(
1

1+0.44pn

)
(Mn)0.448 3.747e7

SWIFT-I 0.448 73(1−0.029ln fn)(1−0.30pn)(Mn)0.448 3.752e7
Additive 0.448 73(1−0.028ln fn −0.26pn)(Mn)0.448 3.753e7

SWIFT-II 0.900 28(1−0.011ln fn)
(

1
1+0.36pn

)
(Mn)0.900 3.607e7

SWIFT-I 0.900 27(1−0.011ln fn)(1−0.27pn)(Mn)0.900 3.609e7
Additive 0.900 28(1−0.011ln fn −0.30pn)(Mn)0.900 3.609e7

Table 5.2: Different fits of total lexical activation for the rereading data using the proposed
lexical processing functions. The fourth column shows the sum of squares residual left
over after fitting.

5.6 Other approaches to forming a lexical process-
ing function

Having found in the previous sections that the SWIFT-II, SWIFT-I and additive
forms of the lexical processing function perform roughly the same, we will adopt

62

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

the additive form for simplicity. In the following manipulations, we will leave
η unchanged at 0.900, and attempt to fit the total lexical activation derived from
normal reading.

5.6.1 Web vs corpus frequency norms
As a first trivial step to better fitting total lexical activation, we follow the lead
of Keller [31] and replace the CELEX word frequency norms with the MSN fre-
quency norms9. The resulting fits are only slightly better than the previous fit
using CELEX frequency norms. This implies that a better resolution of very low
frequencies does not greatly improve the quality of our fit. This may be a con-
sequence of the fact that the robust regression reduces the effect of the extended
tail of large values of total lexical activation, which originates from the gamma
distribution of fixation durations. However, we have seen in Section 3.1.3 that
web frequency norms are consistent with corpus norms at high frequencies, while
performing better at low frequencies, so we will continue to use MSN frequency
norms for the rest of this section.

5.6.2 Simple transformations of predictability
Next, we attempt to improve our fit of total lexical activation by transforming
predictability in some way. Predictability is highly nonuniform in its distribu-
tion, with most values close to zero, reflecting the freedom available to express a
concept through language. Here, we will try out three alternative transformations:

• logit, implying an underlying sigmoidal distribution of predictability

• log, implying an underlying power law distribution of predictability

• binary (0–1 or low–high coding), implying an inherent distinction between
words with high and low predictability

The fits are shown in Table 5.3. The extreme predictability values of zero and one
have been set to 1/160 and 159/160 before performing the log and logit transfor-
mations, following a suggestion in Cohen and Cohen [15]. For the binary trans-
formation, we show the results with a cutoff at 0.03, although other cutoffs were
tried, since this value gave the closest fit; with this cutoff, words are considered
to have a low predictability if less than three of the seventy-odd Cloze subjects
guessed the word correctly.

9The MSN web frequency norm was chosen because it does not suffer from the obvious lack of
results in the frequency range between 1,000 and 10,000 that the other two web frequency norms
have, as mentioned in Section 2.1.3.

63

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

variant fit SS
logit 42

(
1−0.0072ln f MSN

n −0.00024 logit pn
)
(Mn)0.900 2.535e9

log 32(1−0.049ln pn)(Mn)0.900 2.502e9
binary 40

(
1−0.0008ln f MSN

n −0.13 bin pn
)
(Mn)0.900 2.507e9

Table 5.3: Different fits of total lexical activation using different transformations of pre-
dictability. The third column shows the sum of squares residual left over after fitting.

We can see that the logit transformation seems to be totally unsuitable. The log
transformation performs well; in addition, the transformed predictability param-
eter absorbs variance otherwise explained by frequency. The fit with the binary
predictability parameter outperforms the original fit, which highlights the obser-
vation that predictability cannot be treated as a linear parameter.

5.6.3 Semantic and n-gram measures
Now, we explore whether our derived measures can replace predictability in the
fit of total lexical activation. Table 5.4 shows the fits using the MSN trigram
probability with backoff (tn) and the LSA measure (sn).

variant fit SS
trigram 30

(
1−0.005ln f MSN

n −0.022lntn
)
(Mn)0.900 2.519e9

LSA 48
(
1−0.11ln f MSN

n −0.228sn
)
(Mn)0.900 2.478e9

both 37
(
1−0.017ln f MSN

n −0.039lntn−0.29sn
)
(Mn)0.900 2.462e9

Table 5.4: Different fits of total lexical activation using our derived measures. The third
column shows the sum of squares residual left over after fitting.

There is a significant but small improvement (residual sum of squares: 2.458e9)
when we add log predictability to the last fit, implying that the combination of
trigram probability and the LSA measure almost totally explain the variance nor-
mally accounted for by predictability. On first glance, this result seems to be
surprising, since we know that the combination of trigram and LSA measures do
not model predictability perfectly. However, the major discrepancies between our
measures and predictability occur for function words, where the LSA measure is
almost always zero. Function words seem to have little weight in the current re-
gression analysis since they are generally short. In preliminary investigations, it
appears that when the lexical difficulty function is naïvely replaced with the total
lexical activation function built with the trigram and LSA measures, SWIFT tends
to systematically underestimate fixation durations on short high frequency words.

64

CHAPTER 5. REVERSING SWIFT TO TEST ITS LEXICAL PROCESSING
COMPONENT

This suggests that the addition of a variable coding whether a word is a function
or content word (for example, the ∞-norm) could greatly improve the estimates of
lexical difficulty for SWIFT.

5.7 Chapter summary
SWIFT is a computational model that simulates eye movements during reading.
One input required by SWIFT is the lexical difficulty of each word to be read. A
number of proposals have been put forward regarding the exact way that word lex-
ical features should be combined into a single lexical difficulty value. We use real
eye movement data to calculate the total lexical activation for each word, which
is a measure of the maximum amount of processing that could have occurred, as-
suming that the subject processes visual information like SWIFT does. We look
at the relationship of our total lexical activation to word lexical features, finding
that there is little difference between the three proposals that we consider. In an
attempt to better distinguish between the proposals, we take a different set of real
reading data, collected in a rereading paradigm, and apply the same procedure.
Again, we find little difference between the three proposals.

Lastly, we try a number of other possible forms of the lexical processing func-
tion, firstly to see whether we obtain better results with a transformed version of
predictability, and secondly, to test the ability of our derived measures to account
for total lexical activation. The results suggest that log predictability may perform
better than raw predictability, and that our derived measures may perform well
enough to replace predictability altogether.

65

Chapter 6

Discussion

6.1 Can we compute predictability?
Cloze predictability is an important parameter because it acts as a window into
the complex area of cognitive language processing. However, the compression of
many different influences into a single parameter means that predictability itself
should not be easy to create with a computational model. We have seen that the
combination of a simple semantic measure with a simple word n-gram measure
does not allow us to generate predictability values, although these measures are
certainly related to predictability.

The relationship of predictability to our derived measures makes perfect sense
in hindsight. We see that content words with high predictability have two prop-
erties: firstly, they are almost always semantically related to their context, and
secondly, the two- and three-word sequences culminating in the target word occur
quite frequently. However, a word may still be unpredictable even if it is semanti-
cally related to its context and commonly found following the previous one or two
words, perhaps because there are many plausible alternatives, or because subjects
guessed the wrong lexical category (e.g. noun instead of adjective). For func-
tion words, a very uncommon word sequence implies low predictability, but if a
word sequence is moderately common, the word n-gram measure has no power to
discriminate.

So, can we do better if we add extra information? Ideally, we would like to
better predict cases with low predictability that score high with our semantic and
word n-gram measures, meaning that we want a measure that shows unexpectedness.
One such measure is surprisal, suggested by Hale [29], which may be calculated
from a probabilistic context-free grammar. Surprisal is the logarithm of the proba-
bility that the syntactic category of the target word follows the preceding syntactic
context. Adding surprisal to our selection of measures should elegantly allow us

66

CHAPTER 6. DISCUSSION

to directly address syntactic constraints while also providing a measure of unex-
pectedness.

The other major problem is that of long-distance syntactic relationships. Al-
though these occur in English, like in the sentence "He turned all of the lights
in the room on.", they are far less frequent than in German, and thus such issues
have had little visibility in mainstream computational linguistics. It may be possi-
ble to deal with many of these rather simply, by adding a skipping n-gram, where
the last word in the pattern is at the end of the matrix clause, but not this does
not cover all possible long-distance relationships; for example, in the sentence
“Er hätte besser am Samstag nicht sollen arbeiten gehen.”, the words “hätte” and
“sollen” are separated by a considerable distance, but “sollen” is not at the end of
the sentence.

If surprisal and a long-distance syntactic measure were added to our semantic
and n-gram measures, it is quite possible that we would be able to almost totally
model predictability. Such an extension of the current research should not be
difficult to pursue and has the potential to bear much fruit.

6.2 Implications for another application of semantic
and n-gram measures

The application of a combination of semantic and n-gram measures is not re-
stricted to the field of reading research. Wu, Berry, Shivakumar and McLarty [68]
use such measures to classify protein sequences into families. They show their
neural network performs best when they use a combination of the two types of
measures. One of the main results that we have seen in language processing also
occurs in protein classification: Their method is very good at allocating proteins
to a particular family (with a specificity of over 90%), but poor at deciding that a
foreign protein does not to belong to any of the trained families (with a sensitiv-
ity of around 50%). It seems that their method would also benefit from another
measure that shows unrelatedness, although in this case, it is not clear what such
a measure should be.

6.3 Is it possible to improve the lexical processing
module in SWIFT?

One of the reasons for creating computational models of reading is to test certain
hypotheses about the cognitive processing mechanisms underlying reading. In this
dissertation, we have considered the proposition that word lexical features should

67

CHAPTER 6. DISCUSSION

be combined in a certain way to determine lexical difficulty. Our findings indicate
that the current proposals about the form of the lexical processing function do
not differ much in practice. However, other more fundamental considerations
may have a considerable impact on the performance of the reading model: there
is evidence that word lexical activation is closer to an average of letter lexical
activations than a sum of letter lexical activations, and that predictability should
not be treated as a linear parameter. There are other assumptions that can be
examined: one currently debated assumption is the use of a logarithm to deal with
the nonlinear nature of word frequency. Murray and Forster [46] suggest that rank
frequency may be a more suitable measure than log frequency.

One suggestion by Radach and Kennedy [50] is to more closely integrate the
development of eye movement and word recognition models, so that the output
from a word recognition model can be directly used by an eye movement. One
candidate that could probably be integrated with SWIFT is the SERIOL model
[67], which uses five processing layers to represent different stages of word recog-
nition; the lowest layer represents retinal detection of a stimulus, while the high-
est layer chooses the most likely word candidate when given component letter
bigrams. The Reverse SWIFT method shows us the type of input that SWIFT
requires to produce realistic fixation durations; this gives us a criterion to allow
us to compare the suitability of different word recognition models, should it ever
happen that it becomes possible to use such a model to provide inputs to SWIFT.

It is important to recognise that our analyses have been based on total viewing
time. In contrast, the fitting of parameters in SWIFT is performed by using a
genetic algorithm that considers the performance of the model in many different
areas, including single and gaze durations and the fixation pattern. The Reverse
SWIFT approach allows us to reduce the importance of the fixation pattern and
to focus on the lexical difficulty module; once lexical difficulty is determined,
the fixation pattern can still be varied by altering the word selection and saccade-
performance modules in SWIFT, which are somewhat independent.

The semantic and word n-gram measures that we generated seem to perform
just as well as predictability in representing lexical difficulty. If SWIFT performs
just as well with such measures, this gives us far more freedom to generate simula-
tions for other text passages. Most of the measures are extremely easy to collect;
only the creation of the LSA measure is time-consuming and computationally
demanding, but even this process is far more convenient than collecting new pre-
dictability norms from human subjects in a Cloze procedure.

68

CHAPTER 6. DISCUSSION

6.4 Implications for other reading models
There are a number of computational reading models in competition with SWIFT;
some of the major competing models are E-Z Reader [53], Glenmore [54] and
SERIF [43]. These models are based on different hypotheses of the underlying
cognitive processing occurring during reading. However, they are all similar in
that they make very simple assumptions regarding the lexical difficulty of words;
indeed, their focus on other parts of the reading process is understandable, since
the models are not designed to test questions pertaining to lexical difficulty. A
more suitable measure of lexical difficulty may in turn make differences between
the models more obvious, while also improving model fits to real data.

In the E-Z Reader model (version 9), word lexical difficulty is an additive
combination of log frequency and predictability, and the time required to complete
word lexical processing is assumed to be proportional to lexical difficulty, with the
inherent assumption that the word is processed as if it were a single entity located
at the word centre. For this model, the results from our Reverse SWIFT analysis
should carry across almost verbatim, in spite of the two lexical processing phases
in E-Z Reader.

In the Glenmore model, lexical processing starts at the letter level. Word lexi-
cal processing is an average of the amount of processing of the component letters,
and increased by a “positive self-recurrent connection that is proportional to the
frequency of the word”. Because the Glenmore model is implemented as a con-
nectionist model, the core dynamics of the model tend to be hidden within the
structure of the connections; it is probably unrealistic to directly apply an ana-
logue of the Reverse SWIFT methodology to it. However, it might be possible
to apply our procedure by ignoring the implementation and focussing only on the
model’s fundamental cognitive hypotheses.

The SERIF model has at its heart the assumption that foveal splitting is an
important factor in reading. Apart from lexical processing rate being modulated
linearly by log frequency, it is also affected by the visual familiarity of the word
fragments on either side of fixation. This emphasis on foveal splitting means
that it is almost impossible to apply a method like the Reverse SWIFT method,
since reading dynamics are heavily dependent on the exact placement of every
individual fixation. Any adaptation of the method would need to include measures
like orthographic regularity [66] for variable-length sequences of letters at the
beginning and the end of words.

69

CHAPTER 6. DISCUSSION

6.5 Further work
One obvious extension of the work is to find out whether we can better compute
predictability by adding a measure representing the unexpectedness of lexical cat-
egory. This should be a simple matter of taking an existing syntactic parser and
using it to generate predictions of lexical category given a previous context. As a
means of cross-validation, a number of different syntactic parsers should be used
to generate independent predictions.

If lexical category fails to significantly improve our ability to fit predictability,
then more ingenious measures that reflect unrelatedness are needed. This will
require more consideration of individual cases that have low predictability but are
highly related through our semantic and word n-gram measures.

There is always space for finetuning our existing measures. It may be possible
to obtain cleaner web measures by doing some more involved multiword query-
ing; this may also allow us to better enforce a language restriction to the source
data. The addition of long-range skipping to our word n-gram measure should
slightly improve the ability of the measure to account for long-range syntactic
constraints; however, some testing will be necessary to determine an appropriate
skipping paradigm that does not severely increase the complexity of the model
while providing a significant improvement in performance. The transformation of
the LSA measure into an equivalent p-value would benefit from a more accurately
estimated empirical angle distribution.

To discover shortcomings of the Reverse SWIFT method, it will be necessary
to test the suggested forms of lexical difficulty by building them into the SWIFT
model, although we must be cautious about whether we can directly specify pa-
rameters found in the lexical difficulty formula, since total lexical activation is
an overestimate of the amount of processing required. We would expect that the
resulting simulated fixation duration distributions should conform better to those
distributions found in experimental data, and in particular, we should get more
realistic effects of lexical features on fixation duration.

70

Appendix: Source code

In the following code, the punctuation sequence of five dots in a row, ‘.....’,
has the special meaning that the line continues without a line break in the original
code—the line break in these appendices has been artificially added to allow for
the margins. The standard punctuation sequence for an ellipsis, ‘...’, has its
normal meanings, i.e. either to show that some text or code has been excluded, or
as a MATLAB operator to split long lines.

A Preprocessing

A.1 Collation
collect

Shown below is one of the find commands specific to the folder 2005. It was
repeated (with the obvious customisation) for each data folder. The file concate-
nates all of the contents of all nonexcluded files from each folder and outputs them
to a file text.X, where X is a representation of the original folder name.

#!/bin/sh

echo Extracting 2005.

find ~/DATA/2005/. -type f \
-not -name "inderzeit" \
-not -name "*.pdf" \
-not -name "*.zip" \
-not -name "*.jpg" \
-not -name "*.body" \
-not -name "*.head" \
-not -name "*.teihead" \
-not -name "n_*_n" \
-not -name "*Ihr*" \

71

APPENDIX: SOURCE CODE

-not -name "*Sie_*" \
-not -name "*_Sie*" \
-not -name "*termin*" \
-not -name "*ZEIT*" \
-not -name "*ausf_9llen*" \
-not -name "*Impressum*" \
-not -name "*Schach*" \
-exec cat {} \; > ~/datadir/text.2005

preproc1

The file preproc1 reformats the text such that each paragraph (the text between
the XML tags <p...> and </p>) occurs on a single line and is isolated from the
text around it. The sed command was repeated for each input file text.X.

#!/bin/sh
This file puts one paragraph on a line, and then
combines the files into a large file called
’splitfile’.
#
The order of commands is:
- add a space at the end of each line
- remove newline characters
- add newlines after </p> and before <p...>

echo
echo Creating splitfiles:
echo 2005
sed ’s/$/ /g’ \
< ~/datadir/text.2005 | \
tr -d ’\n’ | \
sed -e ’s_\(<\/p>\)_\1\n_g’ -e ’s_\(<p[^>]*>\)_\n\1_g’ > \
~/datadir/newtext.2005

echo
echo Combining splitfiles.
cat ~/datadir/newtext.* > ~/datadir/splitfile

preproc2

The file preproc2 extracts the required plain text from the original XML file.

#!/bin/sh

72

APPENDIX: SOURCE CODE

This file preprocesses the splitfile to only leave
the body text that I want.
#
The preprocessing does the following:
- removes newline characters
(i.e. turns the file into one line)
- adds newlines before <p...> tags and after </p> tags
- only takes lines with both <p...> and </p> tags
- removes control characters
- takes care of the problematic characters ’&<>’
- replace & with &
- replace & with &
- removes <p...> and </p> tags
- removes and tags
- removes <i> and </i> tags
- removes
 tags
- removes <hr/> tags
- removes <line/> tags
- removes , and tags
- removes <a...> and tags
- removes <span...> and tags
- removes <u...> and </u> tags
- removes _{and} tags
- removes ^{and} tags
- removes <image...> and </image> tags
and all content
- removes <raw...> and </raw> tags
and all content
- removes <div...> and </div> tags
and all content
- removes <table...> and </table> tags
and all content
- removes <title...> and </title> tags
and all content
- removes <intertitle...> and </intertitle> tags
and all content
- removes <bu...> and </bu> tags
and all content
- removes <copyright...> and </copyright> tags
and all content
- removes <tt...> and </tt> tags
and all content
#

73

APPENDIX: SOURCE CODE

NOTE!!! and tags need to be
given special treatment
- removes , and tags
#
- outputs the text to master.txt
#

echo
echo Processing tags.
awk ’ /<p[^>]*>.*<\/p>/ \
{gsub(/[[:cntrl:]]/ , " "); \
gsub(/&/ , "\\&"); \
gsub(/&/ , "\\&"); \
gsub(/<p[^>]*>|<\/p>/ , ""); \
gsub(/|<\/b>/ , ""); \
gsub(/<i>|<\/i>/ , ""); \
gsub(/<br[^\/>]*\/>/ , " "); \
gsub(/<hr[^\/>]*\/>/ , " "); \
gsub(/<em[^>]*>|<\/em>|<em\/>/ , ""); \
gsub(/<a[^>]*>|<\/a>/ , ""); \
gsub(/<span[^>]*>|<\/span>/ , ""); \
gsub(/<u[^>]*>|<\/u>/ , ""); \
gsub(/<sub[^>]*>|<\/sub>/ , ""); \
gsub(/<sup[^>]*>|<\/sup>/ , ""); \
gsub(/<line\/>/ , " "); \
gsub(/<line[^>]*>/, "\n"); \
gsub(/<\/line>/, "\n"); \
gsub(/<image[^>]*>/, "\n&"); \
gsub(/<\/image>/, "&\n"); \
gsub(/<image[^>]*>.*<\/image>/ , ""); \
gsub(/<image[^>]*>.*$/ , ""); \
gsub(/<raw\/>/, "\n&"); \
gsub(/<raw[^>]*>/, "&\n"); \
gsub(/<raw[^>]*>.*<\/raw>/ , ""); \
gsub(/<\/raw>/, "\n"); \
gsub(/<div[^>]*>/, "\n&"); \
gsub(/<\/div>/, "&\n"); \
gsub(/<div[^>]*>.*<\/div>/ , ""); \
gsub(/<table[^>]*>/, "\n&"); \
gsub(/<\/table>/, "&\n"); \
gsub(/<table[^>]*>.*<\/table>/ , ""); \
gsub(/<title[^>]*>/, "\n&"); \
gsub(/<\/title>/, "&\n"); \

74

APPENDIX: SOURCE CODE

gsub(/<title[^>]*>.*<\/title>/ , ""); \
gsub(/<intertitle[^>]*>/, "\n&"); \
gsub(/<\/intertitle>/, "&\n"); \
gsub(/<intertitle[^>]*>.*<\/intertitle>/ , ""); \
gsub(/<bu[^>]*>/, "\n&"); \
gsub(/<\/bu>/, "&\n"); \
gsub(/<bu[^>]*>.*<\/bu>/ , ""); \
gsub(/<copyright[^>]*>/, "\n&"); \
gsub(/<\/copyright>/, "&\n"); \
gsub(/<copyright[^>]*>.*<\/copyright>/ , ""); \
gsub(/<tt[^>]*>/, "\n&"); \
gsub(/<\/tt>/, "&\n"); \
gsub(/<tt[^>]*>.*<\/tt>/ , ""); \

The next lines deal with special cases.
gsub(/mann<\/strong>/ , "mann"); \
gsub(/<\/strong>mann/ , "mann"); \
gsub(/intel<\/strong>/ , "intel"); \
gsub(/reise<\/strong>/ , "reise"); \
gsub(/AD<\/strong>HS/ , "ADHS"); \
gsub(/As<\/strong>sheuer/ , "Assheuer"); \
gsub(/Baumgär<\/strong>tel/ , "Baumgärtel"); \
gsub(/Benedi<\/strong>kt/ , "Benedikt"); \
gsub(/Biller<\/strong>beck/ , "Billerbeck"); \
gsub(/Bitt<\/strong>ner/ , "Bittner"); \
gsub(/Computer<\/strong>programm/ ,

"Computerprogramm"); \
gsub(/Coul<\/strong>mas/ , "Coulmas"); \
gsub(/Dampfinha<\/strong>lationen/ ,

"Dampfinhalationen"); \
gsub(/Dries<\/strong>chner/ , "Drieschner"); \
gsub(/El<\/strong>tern/ , "Eltern"); \
gsub(/Fernseh<\/strong>apparat/ ,

"Fernsehapparat"); \
gsub(/Fin<\/strong>ger/ , "Finger"); \
gsub(/Frei<\/strong>heit/ , "Freiheit"); \
gsub(/Gasch<\/strong>ke/ , "Gaschke"); \
gsub(/Ge<\/strong>er/ , "Geer"); \
gsub(/Har<\/strong>tung/ , "Hartung"); \
gsub(/Herzin<\/strong>ger/ , "Herzinger"); \
gsub(/Her<\/strong>zinger/ , "Herzinger"); \
gsub(/Jes<\/strong>sen/ , "Jessen"); \
gsub(/Küm<\/strong>mel/ , "Kümmel"); \
gsub(/Knei<\/strong>pe/ , "Kneipe"); \

75

APPENDIX: SOURCE CODE

gsub(/Krem<\/strong>pl/ , "Krempl"); \
gsub(/Ladur<\/strong>ner/ , "Ladurner"); \
gsub(/Michae<\/strong>lis/ , "Michaelis"); \
gsub(/Nachricht<\/strong>en/ , "Nachrichten"); \
gsub(/Nico<\/strong>demus/ , "Nicodemus"); \
gsub(/Pinz<\/strong>ler/ , "Pinzler"); \
gsub(/Ra<\/strong>disch/ , "Radisch"); \
gsub(/Ran<\/strong>dow/ , "Randow"); \
gsub(/Ro<\/strong>gowski/ , "Rogowski"); \
gsub(/Schwar<\/strong>zer/ , "Schwarzer"); \
gsub(/Si<\/strong>lja/ , "Silja"); \
gsub(/Spe<\/strong>zial/ , "Spezial"); \
gsub(/Stil<\/strong>seite/ , "Stilseite"); \
gsub(/Te<\/strong>yssen/ , "Teyssen"); \
gsub(/Ul<\/strong>rich/ , "Ulrich"); \
gsub(/Vorho<\/strong>lz/ , "Vorholz"); \
gsub(/ZE<\/strong>IT/ , "ZEIT"); \
print}’ ~/datadir/splitfile |

gawk ’\
{a = gensub(/([^[:alpha:]][[:alpha:]]).....

(|<\/strong>|<strong\/>)/ , "\\1" , "g"); \
b = gensub(/(|<\/strong>|<strong\/>).....
([[:alpha:]]{1,2}[^[:alpha:]])/ , "\\2" , "g" , a); \

c = gensub(/|<\/strong>|<strong\/>/ ,
" " , "g" , b); \

print c}’ > master.txt

A.2 Text cleaning and preparation
The extracted plain text needs to be cleaned up, because of the presence of special
characters and strings. Then the resulting text is converted to lower case and
numbers are replaced by a generic tag. This file is designed to work with a text
file not necessary created by our XML parser, which is why control characters are
removed again as a precautionary measure.

mkmaster1

#!/bin/sh
This file cleans the original text file
input: master.txt
outputs: master.newtxt
Text file with altered punctuation
master.lowertxt

76

APPENDIX: SOURCE CODE

Text file in lower case
master.nonum
Text file without numbers
master.newidngram
Id n-gram file without non-vocab words

clear

#################### !!! CAREFUL !!! ####################
#
Use the following with great care, since it applies to
all control characters ...
#
Remove control characters and change them into spaces.
awk ’{ gsub(/[[:cntrl:]]/ , " "); print }’ master.txt > \
master_noctrl.txt

#
Do nothing.
#cp master.txt master_noctrl.txt
#
###

echo
echo ’Dealing with & coding.’
echo ’Dealing with &#number coding.’
echo ’Dealing with web and email addresses’
Note that this | is entered in vim as CTRL-V x a0
Note that this · is entered in vim as CTRL-V x b7
Special symbols can be identified using :ascii
echo ’Removing characters !;*?()"«»[]|·ÂÝâ

01¦¬’"’:"
echo ’Removing miscellaneous free punctuation.’
echo ’Dealing with abbreviations that use full stops.’
echo ’Isolating full stops.’
echo ’Removing free colons.’
echo ’Removing word-bound commas.’

#
1. Deal with & coding and special symbol encoding:
- replace < with a space
- replace > with a space
- remove < and >
- replace à with a
- replace © with <Copyrightsym>
- replace &Copy; with <Companysym>

77

APPENDIX: SOURCE CODE

- replace ½ with 1/2
- replace &Termine; with & Termine
- replace ú with u

- replace Ã¤ with ä
- replace Ã¶ with ö
- replace Ã¼ with ü
- replace Ã with ß
- replace Ã© with é
- replace Ã§ with ç

awk ’{gsub(/</ , " "); \
gsub(/>/ , " "); \
gsub(/[<>]/ , " "); \
gsub(/à/ , "a"); \
gsub(/©(;)*/ , "<Copyrightsym>"); \
gsub(/&Co(;)*/ , "<Companysym>"); \
gsub(/½/ , "1/2"); \
gsub(/&Termine(;)*/ , "\\& Termine"); \
gsub(/ú/ , "u"); \

gsub(/Ã¤/ , "ä");

gsub(/Ã¶/ , "ö"); \
gsub(/Ã¼/ , "ü"); \
gsub(/Ã / , "ß"); \
gsub(/Ã©/ , "é"); \
gsub(/Ã§/ , "ç"); \
gsub(/¼([[:graph:]]|$)/ , " "); \
gsub(/([[:graph:]]|^)¼/ , " "); \
gsub(/½([[:graph:]]|$)/ , " "); \
gsub(/([[:graph:]]|^)½/ , " "); \

2. Deal with &#number coding:
- replace 13 with a space
- replace 36 with $
- replace 37 with %
- replace 39 (single quote) with a space
- replace 128 with <Eurosym>
- replace 130 (baseline single quote) with a space
- replace 132 (baseline double quote) with a space
- replace 145 (open single quote) with a space
- replace 146 (close single quote) with a space
- replace 147 (open double quote) with a space
- replace 150 (en dash) with a space
- replace 160 () with a space
- replace 163 with <Poundsym>
- replace 167 (section symbol) with s

78

APPENDIX: SOURCE CODE

- replace 171 («) with a space
- replace 175 (high horizontal bar) with a space
- replace 187 (») with a space
- replace 228 with ä
- replace 252 with ü
- replace 261 with c
- replace 263 with c
- replace 268 with C
- replace 269 with c
- replace 277 with e
- replace 281 with e
- replace 283 with e
- replace 287 with g
- replace 305 with i
- replace 321 with L
- replace 322 with l
- replace 324 with n
- replace 328 with n
- replace 338 with OE
- replace 339 with oe
- replace 344 with R
- replace 345 with r
- replace 346 with S
- replace 347 with s
- replace 350 with S
- replace 351 with s
- replace 352 with S
- replace 353 with s
- replace 376 with Y
- replace 378 with z
- replace 380 with z
- replace 381 with Z
- replace 382 with z
- replace 402 with f
- replace the following spacing symbols with nothing
- 710
- 711
- 728
- 729
- 730
- 731
- 732
- 733

79

APPENDIX: SOURCE CODE

- replace e769 with é
- replace a776 with ä
- replace u776 with ü
- replace 960 with <SmallPisym>
- replace 1111 with i
- replace the following with a space:
- 8211, 8212 (dashes)
- 8216, 8217, 8218, 8220, 8221, 8222
(apostrophes or quotes)
- 8224 (dagger)
- 8225 (double dagger)
- 8226 (bullet)
- 8230 (ellipsis)
- 8240 (per hundred)
- 8249, 8250 (angle brackets)
- replace 8364 with /
- replace 8364 with <Eurosym>
- replace 8482 with Ö
- replace 8486 with <Ohmsym>
- replace 8706 (partial derivative d) with d
- replace 8710 with <BigDeltasym>
- replace 8719 with <BigPisym>
- replace 8734 with y
- replace 8776 with z
- replace 8800 with s
- replace 8804 with r
- replace 8805 with r
- replace 9674 with <Diamondsym>
- replace 20250 with <Kanjichar>
- replace 21361 with <Kanjichar>
- replace 26426 with <Kanjichar>
- replace 64257 with fi
- replace 64257 with e

gsub(// , " "); \
gsub(/$/ , "$"); \
gsub(/%/ , "%"); \
gsub(/'(;)*/ , " "); \
gsub(/€/ , "<Eurosym>"); \
gsub(/‚/ , " "); \
gsub(/„/ , " "); \
gsub(/‘/ , " "); \
gsub(/’/ , " "); \
gsub(/“/ , " "); \

80

APPENDIX: SOURCE CODE

gsub(/–/ , " "); \
gsub(/ / , " "); \
gsub(/£/ , "<Poundsym>"); \
gsub(/§/ , "s"); \
gsub(/«/ , " "); \
gsub(/¯/ , " "); \
gsub(/»/ , " "); \
gsub(/ä/ , "ä"); \
gsub(/ü/ , "ü"); \
gsub(/ą/ , "a"); \
gsub(/ć/ , "c"); \
gsub(/Č/ , "C"); \
gsub(/č/ , "c"); \
gsub(/ĕ/ , "e"); \
gsub(/ę/ , "e"); \
gsub(/ě/ , "e"); \
gsub(/ğ/ , "g"); \
gsub(/ı/ , "i"); \
gsub(/Ł/ , "L"); \
gsub(/ł/ , "l"); \
gsub(/ń/ , "n"); \
gsub(/ň/ , "n"); \
gsub(/Œ/ , "OE"); \
gsub(/œ/ , "oe"); \
gsub(/Ř/ , "R"); \
gsub(/ř/ , "r"); \
gsub(/Ś/ , "S"); \
gsub(/ś/ , "s"); \
gsub(/Ş/ , "S"); \
gsub(/ş/ , "s"); \
gsub(/Š/ , "S"); \
gsub(/š/ , "s"); \
gsub(/Ÿ/ , "Y"); \
gsub(/ź/ , "z"); \
gsub(/ż/ , "z"); \
gsub(/Ž/ , "Z"); \
gsub(/ž/ , "z"); \
gsub(/ƒ/ , "f"); \
gsub(/ˆ/ , ""); \
gsub(/ˇ/ , ""); \
gsub(/˘/ , ""); \
gsub(/˙/ , ""); \
gsub(/˚/ , ""); \

81

APPENDIX: SOURCE CODE

gsub(/˛/ , ""); \
gsub(/˜/ , ""); \
gsub(/˝/ , ""); \
gsub(/é/ , "é"); \
gsub(/ä/ , "ä"); \
gsub(/ü/ , "ü"); \
gsub(/π/ , "SmallPisym"); \
gsub(/ї/ , "i"); \
gsub(/–/ , " "); \
gsub(/—/ , " "); \
gsub(/‘/ , " "); \
gsub(/’/ , " "); \
gsub(/‚/ , " "); \
gsub(/“/ , " "); \
gsub(/”/ , " "); \
gsub(/„/ , " "); \
gsub(/†/ , " "); \
gsub(/‡/ , " "); \
gsub(/•/ , " "); \
gsub(/…/ , " "); \
gsub(/‰/ , " "); \
gsub(/‹/ , " "); \
gsub(/›/ , " "); \
gsub(/⁄/ , "/"); \
gsub(/€/ , "<Eurosym>"); \

Note that 8482 is normally a TM symbol
gsub(/™/ , "Ö"); \
gsub(/Ω/ , "<Ohmsym>"); \
gsub(/∂/ , "d"); \

Note that 8734 is normally a BigDelta symbol
gsub(/∆/ , "S"); \
gsub(/∏/ , "<BigPisym>"); \

Note that 8734 is normally an Infinity symbol
gsub(/∞/ , "y"); \

Note that 8747 is normally an Integral symbol
gsub(/∫/ , "n"); \

Note that 8776 is normally an ApproxEqual symbol
gsub(/≈/ , "z"); \

Note that 8800 is normally a NotEqual symbol
gsub(/≠/ , "s"); \

Note that 8804 is normally a LessThanOrEqual symbol
gsub(/≤/ , "r"); \

Note that 8805 is normally a GreaterThanOrEqual symbol

82

APPENDIX: SOURCE CODE

gsub(/≥/ , "e"); \
gsub(/◊/ , "<Diamondsym>"); \
gsub(/会/ , "<Kanjichar>"); \
gsub(/危/ , "<Kanjichar>"); \
gsub(/机/ , "<Kanjichar>"); \
gsub(/ﬁ/ , "fi"); \

note that 64258 is normally a fl symbol
gsub(/ﬂ/ , "e"); \
gsub(/&/ , "<Ampersandsym>"); \
print }’ master_noctrl.txt |

3. Deal with http://... and ftp://... and
email addresses
awk ’{gsub(/http:\/\/[[:graph:]]+/ ,

" <webaddress> "); \
gsub(/[[:graph:]]*www\.[[:graph:]]+/ ,
" <webaddress> "); \
gsub(/[[:graph:]]+\.htm(l)*/ ,
" <webaddress> "); \
gsub(/ftp:\/\/[[:graph:]]*/ ,
" <webaddress> "); \
gsub(/([[:graph:]])+@([[:graph:]])+.....
\.([[:graph:]])+/ , " <emailaddress> "); \

4. Remove specified punctuation.
Note that this must be altered rather carefully!!!

gsub(/[\!;*()\"\\«\\»\[\]\|·ÂÝâ
01¦¬{}]|:/ , " ");

5. Deal with abbreviations that use full stops:
- a.d.
- a.D.
- AG
- Anm.
- bzw.
- dgl.
- d.h.
- Dr.
- d.Red.
- e.h.
- e.V.
- Frankfurt a. M.
- GmbH
- Ltd.
- h.c.
- hrsg. v.
- i.H.

83

APPENDIX: SOURCE CODE

- i.R.
- KO
- k.u.k.
- n.Chr.
- OK
- p.a.
- P. O. Box
- Pty.
- q.e.d.
- s.d.
- s.u.
- Tel.
- u.a.
- u.ä.
- u.U.
- u.s.w.
- u.v.a.
- v.Chr.
- vgl.
- v.H.
- z.B.
- z.Hd.
- z.T.
- z.Zt.
gsub(/ a\. *d\.([^[:alnum:]]|$)/ , " <ad> "); \
gsub(/ a\.? *D\.?([^[:alnum:]]|$)/ , " <aD> "); \
gsub(/ [Aa]\.? *[Gg]\.?([^[:alnum:]]|$)/ , " <AG> "); \
gsub(/ Anm *\.?([^[:alnum:]]|$)/ , " <Anm> "); \
gsub(/ bzw\.([^[:alnum:]]|$)/ , " <bzw> "); \
gsub(/ dgl *\.([^[:alnum:]]|$)/ , " <dgl> "); \
gsub(/ [Dd]\. *h\.([^[:alnum:]]|$)/ , " <dh> "); \
gsub(/ Dr *\.([^[:alnum:]]|$)/ , " <dgl> "); \
gsub(/ [Dd]\. *[Rr]ed\.([^[:alnum:]]|$)/ ,
" <dRed> "); \
gsub(/ [Ee]\. *h\.([^[:alnum:]]|$)/ , " <eh> "); \
gsub(/ e\. *V\.([^[:alnum:]]|$)/ , " <eV> "); \
gsub(.....
/[Ff]rankfurt *a *\.? *[Mm](ain)?\.?([^[:alnum:]]|$)/ ,
"<FrankfurtamMain> "); \
gsub(/ G\.? *m\.? *b\.? *H\.?([^[:alnum:]]|$)/ ,
" <GmbH> "); \
gsub(/ h\. *c\.([^[:alnum:]]|$)/ , " <hc> "); \
gsub(/ [Hh]rsg\. *v(on)*\.([^[:alnum:]]|$)/ ,

84

APPENDIX: SOURCE CODE

" <hrsgv> "); \
gsub(/ i\. *H\.([^[:alnum:]]|$)/ , " <iH> "); \
gsub(/ i\. *R\.([^[:alnum:]]|$)/ , " <iR> "); \
gsub(/ [Kk]\. *[Oo]\.([^[:alnum:]]|$)/ , " <KO> "); \
gsub(/ k\. *u\. *k\.([^[:alnum:]]|$)/ , " <kuk> "); \
gsub(/ n\. *[Cc]hr\.([^[:alnum:]]|$)/ , " <nChr> "); \
gsub(/ Ltd *\.?([^[:alnum:]]|$)/ , " <Ltd> "); \
gsub(/(|$)[Oo]\.? *[Kk]\.?([^[:alnum:]]|$)/ ,
" <OK> "); \
gsub(/ p\. *[Aa]\.([^[:alnum:]]|$)/ , " <pa> "); \
gsub(/ P\.? *O\.? *Box([^[:alnum:]]|$)/ , " <POBox> ");\
gsub(/ Pty *\.?([^[:alnum:]]|$)/ , " <Pty> "); \
gsub(/ q\. *e\. *d\.([^[:alnum:]]|$)/ , " <qed> "); \
gsub(/ s\. *d\.([^[:alnum:]]|$)/ , " <sd> "); \
gsub(/ s\. *u\.([^[:alnum:]]|$)/ , " <su> "); \
gsub(/ Tel *\.?([^[:alnum:]]|$)/ , " <Tel> "); \
gsub(/ u\. *a\.([^[:alnum:]]|$)/ , " <ua> "); \
gsub(/ u\. *ä\.([^[:alnum:]]|$)/ , " <uä> "); \
gsub(/ u\.? *s\.? *w\.?([^[:alnum:]]|$)/ , " <usw> "); \
gsub(/ u\. *v\. *a\.([^[:alnum:]]|$)/ , " <uva> "); \
gsub(/ u\. *U\.([^[:alnum:]]|$)/ , " <uU> "); \
gsub(/ v\. *[Cc]hr\.([^[:alnum:]]|$)/ , " <vChr> "); \
gsub(/ vgl *\.?([^[:alnum:]]|$)/ , " <vgl> "); \
gsub(/ v\. *H\.([^[:alnum:]]|$)/ , " <vH> "); \
gsub(/ z\.? *B\.?([^[:alnum:]]|$)/ , " <zB> "); \
gsub(/ z\. *Hd*\.([^[:alnum:]]|$)/ , " <zHd> "); \
gsub(/ z\. *T\.([^[:alnum:]]|$)/ , " <zT> "); \
gsub(/ z\. *Zt*\.([^[:alnum:]]|$)/ , " <zZt> "); \

print }’ |
Now process strings of alternating capital letters and
full stops:
gawk ’{.....
a = gensub(/([[:punct:][:space:]])([[:alpha:]]).....

(\. *)([[:alpha:]])(\. *)([[:alpha:]])(\. *).....
([[:alpha:]])(\.)/ ,
" <initials\\2\\4\\6\\8> " , "g"); \

b = gensub(/([[:punct:][:space:]])([[:alpha:]]).....
(\. *)([[:alpha:]])(\. *)([[:alpha:]])(\. *)/ ,
" <initials\\2\\4\\6> " , "g" , a); \

c = gensub(/([[:punct:][:space:]])([[:alpha:]]).....
(\. *)([[:alpha:]])(\. *)/ ,
" <initials\\2\\4> " , "g" , b); \

print c}’ |

85

APPENDIX: SOURCE CODE

Note that the following single-letter replacements must
come last:
- d.
- g.
- l.
- p.
- r.
- s.
- t.
- u.
- v.
awk ’{gsub(/ d\. *[^[:lower:][:digit:][:punct:]]/ ,

" <d> "); \
gsub(/ g\. / , " <g> "); \
gsub(/ l\. / , " <l> "); \
gsub(/ p\. *[^[:alpha:][:punct:]]/ , " <p> "); \
gsub(/ r\. / , " <r> "); \
gsub(/ s\. / , " <s> "); \
gsub(/ t\. / , " <t> "); \
gsub(/ u\. / , " <u> "); \
gsub(/ v\. / , " <v> "); \

6. Remove certain sequences of punctuation.
gsub(/\+\/-/ , " <plusminus> "); \
gsub(/([[:graph:]])*\+-([[:graph:]]*)/ , " "); \
gsub(/([[:space:]]|^)-+/ , " "); \
gsub(/-+([[:space:]]|$)/ , " "); \
gsub(/([[:space:][:punct:]]|^),+/ , " "); \
gsub(/,+([[:space:][:punct:]]|$)/ , " "); \
gsub(/\.\.+/ , " "); \
gsub(/\. \. \./ , " "); \
gsub(/([[:space:]\.]|^)’\’’+/ , " "); \
gsub(/’\’’+([[:space:]\.]|$)/ , " "); \
gsub(/([[:space:]]|^)\++([[:space:]]|$)/ , " "); \
gsub(/([[:space:]]|^)==+([[:space:]]|$)/ , " "); \

gsub(/([[:space:]]|^)@+[[:punct:]]*([[:space:]]|$)/,.....
" "); \
gsub(/([[:space:]]|^)#+[[:punct:]]*([[:space:]]|$)/,.....
" "); \

gsub(/\/+[[:punct:]]*([[:space:]]|$)/ , " "); \
gsub(/([[:space:]]|^)[[:punct:]]*\/+/ , " "); \
gsub(/\+\++/ , " "); \
gsub(/[-_]+([[:space:]]|$)/ , " "); \
gsub(/([[:space:]]|^)[-_]+/ , " "); \

86

APPENDIX: SOURCE CODE

gsub(/([[:space:]]|^)-+([[:space:]]|$)/ , " "); \

gsub(/([[:space:]]|ˆ)ª+([[:space:]]|$)/ , " "); \
gsub(/([[:space:]]|ˆ)÷+/ , " "); \
gsub(/÷+([[:space:]]|$)/ , " "); \

gsub(/\/\// , "/"); \
gsub(/([[:space:]]|^).....

[äãåçéèêëíìîïnñóòôöõúùûü°¢£§¶ß®©Ö´‘~].....
([[:space:]]|$)/ , " "); \

print }’ |
7. Put spaces before full stops, as well as adding
an initial full stop.
gawk ’{.....
a = gensub(/([[:graph:]])(\.)(|$)/ , \\1 . " , "g"); \
b = gensub(/([[:graph:]])(:)(|$)/ , "\\1 " , "g" , a);\

8. Treat commas specially.
c = gensub(/([[:alpha:]])(,)([[:alpha:]])/ ,

"\\1 \\3" , "g" , b); \
9. Recapitalise Sebastian Herzog
d = gensub(/sebastian herzog/ ,

"Sebastian Herzog" , "g" , c); \
10. Treat question marks specially.
e = gensub(/([[:alpha:]])(\?)([^[:lower:]]|$)/ ,

"\\1 \\3" , "g" , d); \
f = gensub(/([^[:alpha:]]|^)(\?)/ , "\\1 " , "g" , e); \

print f}’ > master.temptxt

rm -f master_noctrl.txt

echo ’Adding initial full stop.’
echo . | cat - master.temptxt > master.newtxt

rm -f master.temptxt
#
###

Turn the whole file to lower case

echo
echo ’Turning file to lower case and removing extra.....

spaces and full stops.’
gawk ’{a = tolower($0) ; \

b = gensub (/(|^)(\.(|$))+/ , " " , "g" , a); \
c = gensub (/[[:space:]]+/ , " " , "g" , b); \

87

APPENDIX: SOURCE CODE

print c }’ master.newtxt > master.lowertxt

Remove standalone numbers

echo
echo ’Replacing standalone numbers by <number>’
gawk ’{.....
gsub (/(\<)([[:digit:][:punct:]])*([[:digit:]]).....
([[:digit:][:punct:]])*(\>)/ , "<number>"); \
gsub (/[[:digit:]]+/ , "<number>"); \
print }’ master.lowertxt > master.nonum

A.3 Conversion into the appropriate format
mkmaster2

The file mkmaster2 uses the cleaned text to generate a vocabulary and frequency
counts, as well as a file where all words have been replaced by their corresponding
vocabulary number.

#!/bin/sh
This file creates a vocabulary based on the
preprocessed text file
input: master.nonum
outputs: master.wfreq
Word frequency table
master.vocab
Vocabulary file
master.newvocab
Vocabulary file minus comments
master.numvocab
Vocabulary file with line numbers
master.tagtxt
Text file with tagged numbers
master.numtxt
Numerised text file

echo ’Creating word frequency table.’
text2wfreq < master.nonum > master.wfreq

echo ’Sorting word frequency table.’
sort -k 2 -n -o master.wfreqsort master.wfreq

88

APPENDIX: SOURCE CODE

echo
echo ’Creating vocab file.’
wfreq2vocab -gt 1 < master.wfreq > master.vocab

To relate statistics back to the original corpus,
remove comment lines from the vocab file.
grep -v ’^##’ master.vocab > master.newvocab

The next command adds line numbers to the vocab file
nl master.newvocab > master.numvocab

###
#
echo
echo ’Substituting vocab numbers for words.’
#
CAUTION!!!
Note: The file is written such that long words are
processed first, to prevent problems arising from
non-full word replacements.
#
First step is to tag all remaining digit sequences in
the source text and vocab list with the tags <nums>
(start of number) and <nume> (end of number).
echo
echo ’Tagging remaining digit sequences.’
awk ’{gsub(/[0-9]+/,"<nums>&<nume>"); print }’
master.nonum > master.tagtxt

awk ’{gsub(/[0-9]+/,"<nums>&<nume>",$2); print }’
master.numvocab > vocabtag.tmp

#
Second step is to sort the vocab list in reverse
word length order.
echo
echo ’Sorting vocab list in reverse order.’
awk ’{print length($2) " " $1 " " $2}’ vocabtag.tmp >
length1.tmp

rm -f vocabtag.tmp
sort -r -n length1.tmp > length2.tmp
rm -f length1.tmp
awk ’{print $2 " " $3}’ length2.tmp > length3.tmp

89

APPENDIX: SOURCE CODE

rm -f length2.tmp
#
Third step is to add \ to problem characters.
The full list of problem characters is /.*[]^$ but
we don’t have *[]^ any more.
echo
echo ’Adding backslash to problem characters.’
sed ’s:[\/\.\$]:\\&:g’ length3.tmp > length4.tmp
rm -f length3.tmp
#
Fourth step is to create the basic sed replacement files.
#
echo
echo ’Creating basic sed replacement files.’
#
4.1: Create the full replacement file
echo ’Creating full replacement file.’
awk ’{ print "s! " $2 " !" $1 "!g"}’ length4.tmp >
sedproc1.tmp

rm -f length4.tmp
#
In the following command, it is assumed that the file
’finish_sedproc’ exists, which consists of the lines:
#
#! /bin/awk -f
{ currlen = length($2)
if (currlen < maxlen && maxlen > 1) {
print "s![[:alpha:][:punct:]][[:graph:]]\\{"
currlen-1 "," maxlen-2 "\\}[[:alpha:][:punct:]]!0!g"
maxlen = currlen
}
print $0
}
#
finish_sedproc -v maxlen=1000 sedproc1.tmp > sedproc1_1.tmp
rm -f sedproc1.tmp
sed ’s/ //g’ sedproc1_1.tmp > sedproc1_2.tmp
rm -f sedproc1_1.tmp
#
In the following command, it is assumed that the file
’lastline_sedproc’ exists, which consists of a single line:
s![^[:digit:][:space:]]!0!g
#

90

APPENDIX: SOURCE CODE

cat sedproc1_2.tmp lastline_sedproc > full_sedproc.tmp
rm -f sedproc1_2.tmp
#
rm -f seddir/*
rm -f progress_file
rm -f progress_subfile
rm -f master.numtxt
#
4.2: Split the process and the source text file up
into manageable pieces.
echo ’Splitting files.’
split -l 10000 full_sedproc.tmp seddir/fsed_
split master.tagtxt seddir/ftxt_
rm -f full_sedproc.tmp
#
4.3 Create the executable that will sequentially call
the pieces of the process.
echo ’Creating sedproc2.’
ls -1 seddir/fsed_* > sed_list
ls -1 seddir/ftxt_* > txt_list
#
The following is a hack to allow use of two processors
awk ’{print $0 " "}’ sed_list | tr -d ’\n’ > sed_list2.tmp
rm -f sed_list
sed ’s/seddir[[:graph:]]* seddir[[:graph:]]* /&\n/g’
sed_list2.tmp > sed_list3.tmp

rm -f sed_list2.tmp

echo ’#\!/bin/sh’ > sedproc2.tmp
awk ’{ \
if (NF==2) {print "cat temp_in | sed -f " $1 " |
sed -f " $2 " > temp_out; mv -f temp_out temp_in;
echo Finished " $2 " >> progress_subfile ;
date >> progress_subfile"} \
else {print "cat temp_in | sed -f " $1 " > temp_out;
mv -f temp_out temp_in; echo Finished " $1 " >>
progress_subfile ; date >> progress_subfile"} \

}’ sed_list3.tmp >> sedproc2.tmp
chmod 700 sedproc2.tmp
#
4.4 Create the executable that will apply the process to
the pieces of the source text file.
echo ’Creating sedproc3.’

91

APPENDIX: SOURCE CODE

echo ’#\!/bin/sh’ > sedproc3.tmp
awk ’{print "rm -f progress_subfile; cp -f " $0 "
temp_in; sedproc2.tmp; cat temp_in >> master.numtxt;
echo Finished " $0 " >> progress_file ;
date >> progress_file" }’ txt_list >> sedproc3.tmp

chmod 700 sedproc3.tmp
#
4.5 Run the process
echo ’Running process.’
nice time sedproc3.tmp &
#
rm -f sedproc2.tmp
rm -f sedproc3.tmp
#
###

mkmatlab

After we obtain the numerised form of the ZEIT corpus, a few small modifications
are required to allow MATLAB to import it correctly.

#!/bin/sh
###
#
Now we have to turn this file into the correct format
for MATLAB processing. This requires us to add negative
line numbers at the beginning of each line, and then to
concatenate lines so that MATLAB will read in a
(transposed) vector as input.
#
echo
echo Putting file in MATLAB format.
nl master.numtxt > master_linum.numtxt
awk ’{ gsub(/\y./,"-&",$1); print }’
master_linum.numtxt > matinput.tmp

rm -f master_linum.numtxt

paste -d ’ ’ -s matinput.tmp > matinput.txt
rm -f matinput.tmp
#
And finally, we need to tell matlab how big the
SVD matrix needs to be.
#

92

APPENDIX: SOURCE CODE

wc -l master.newvocab master.numtxt > matsize.tmp
awk ’{print $1}’ matsize.tmp > matsize.txt
rm -f matsize.tmp

echo
echo ’Creating id n-gram file.’
text2idngram -vocab master.newvocab -n 2
-write_ascii < master.newtxt > master.idngram

Remove lines referring to characters not in the vocab.
echo
echo ’Removing non-vocab characters from id n-gram file.’
grep -wv 0 master.idngram > master.newidngram

B Approximate Latent Semantic Analysis

B.1 Creating the initial term–document matrix
mksvd_preproc1.m

The following code creates a term–document matrix from the original text.

clear;

% text is the imported (transposed) vector containing
% the numerised text with (negativised) line numbers

text = load(’matinput.txt’);

% w is the number of words in the training vocabulary
% l is the number of lines in the training text

matsize = load(’matsize.txt’);
w = matsize(1);
l = matsize(2);

clear matsize;

% occur is the word frequency matrix in each line
%occur = spalloc(w,l,size(text,2)-l);
occur = spalloc(w,l,30000000);
clear w l;

93

APPENDIX: SOURCE CODE

for n = 1 : size(text,2)
if text(n) > 0
occur(text(n),j) = occur(text(n),j) + 1;
elseif text(n) < 0
j = -text(n);
end

end

save occur.mat occur

B.2 Log odds preprocessing
mksvd_preproc2.m

We split the initial term–document matrix into four to allow for memory limi-
tations. After recoding it as a binary occurrence matrix instead of a frequency
matrix, we repeatedly ‘remove’ rows and columns than only have one nonzero
entry, since these rows and columns will contribute no useful information to our
semantic space. Finally, we apply the log odds transformation.

clear;

% Initial sanity check for singleton words and then
% empty documents. Note that singleton words should
% already have been removed, so emptyword_top and
% emptywordmat_bot should be empty.
%
% The recursive removal of all eventually-singleton
% words and documents occurs later.

load occur.mat occur;
docmat = any(occur,1);
emptydoc = find(docmat == 0);
clear docmat;

ns = [1 : size(occur,2)]; ns(emptydoc) = [];

rowsplit = 210000;
colsplit = 314000;
save splits.mat rowsplit colsplit;

% The following lines cause a 0-1 occurrence coding to be
% used instead of frequency. Note that the inclusion of

94

APPENDIX: SOURCE CODE

% these lines is the choice of the person doing the
% analysis.

occur_top = spones(sparse(occur(1 : rowsplit,ns)));
%occur_top = sparse(occur(1 : rowsplit,ns));
save occur_top.mat occur_top; clear occur_top;
occur_bot = spones(sparse(occur(rowsplit + 1 : end,ns)));
%occur_bot = sparse(occur(rowsplit + 1 : end,ns));
save occur_bot.mat occur_bot; clear occur_bot;

clear;

load splits.mat rowsplit colsplit;
load occur_top.mat occur_top;
preproc_topleft = occur_top(:,1 : colsplit);
preproc_topright = occur_top(:,colsplit + 1 : end);
save preproc_topleft.mat preproc_topleft;
save preproc_topright.mat preproc_topright;
clear;

load splits.mat rowsplit colsplit;
load occur_bot.mat occur_bot;
preproc_botleft = occur_bot(:,1 : colsplit);
preproc_botright = occur_bot(:,colsplit + 1 : end);
save preproc_botleft.mat preproc_botleft;
save preproc_botright.mat preproc_botright;
clear;

%
% log odds preprocessing
%

% First, generate sparsity matrices; this takes into
% account the fact that the occurrence matrix may not
% already be 0-1 coded

load preproc_topleft;
sparsity_tl = spones(preproc_topleft);
clear preproc_topleft;

load preproc_topright;

95

APPENDIX: SOURCE CODE

sparsity_tr = spones(preproc_topright);
clear preproc_topright;

load preproc_botleft;
sparsity_bl = spones(preproc_botleft);
clear preproc_botleft;

load preproc_botright;
sparsity_br = spones(preproc_botright);
clear preproc_botright;

% find rows and columns that have less than two nonzero
% cells; we repeat the process until we hit no
% single-cell rows or columns

singles_t = [];
singles_b = [];
singles_l = [];
singles_r = [];
flag = 0;
row_singles = 0;
col_singles = 0;

while flag == 0
nonsingles_l = [1:size(sparsity_tl,2)]’;
nonsingles_r = [1:size(sparsity_br,2)]’;
nonsingles_l(singles_l) = [];
nonsingles_r(singles_r) = [];

% rows
elsum_tl = full(sum(sparsity_tl(:,nonsingles_l),2));
elsum_tr = full(sum(sparsity_tr(:,nonsingles_r),2));
elsum_bl = full(sum(sparsity_bl(:,nonsingles_l),2));
elsum_br = full(sum(sparsity_br(:,nonsingles_r),2));
elsum_t = elsum_tl + elsum_tr;
elsum_b = elsum_bl + elsum_br;

singles_t = find(elsum_t <= 1);
singles_b = find(elsum_b <= 1);
clear elsum_*;

new_row_singles = length(singles_t) + length(singles_b);
if new_row_singles > row_singles

96

APPENDIX: SOURCE CODE

row_singles = new_row_singles;
else
flag = 1;
break;
end

% columns

nonsingles_t = [1:size(sparsity_tl,1)]’;
nonsingles_b = [1:size(sparsity_br,1)]’;
nonsingles_t(singles_t) = [];
nonsingles_b(singles_b) = [];

elsum_tl = full(sum(sparsity_tl(nonsingles_t,:),1));
elsum_tr = full(sum(sparsity_tr(nonsingles_t,:),1));
elsum_bl = full(sum(sparsity_bl(nonsingles_b,:),1));
elsum_br = full(sum(sparsity_br(nonsingles_b,:),1));
elsum_l = elsum_tl + elsum_bl;
elsum_r = elsum_tr + elsum_br;

singles_l = find(elsum_l <= 1);
singles_r = find(elsum_r <= 1);
clear elsum_*;

new_col_singles = length(singles_l) + length(singles_r);
if new_col_singles > col_singles
col_singles = new_col_singles;
else
flag = 1;

% break;
end

end

save singles.mat singles_*;
save nonsingles.mat nonsingles_*;

clear;

% the following allows us to sample in a way as to
% avoid problematic rows and columns

load nonsingles;

97

APPENDIX: SOURCE CODE

load preproc_topleft;
colsum_topleft = ...
full(sum(preproc_topleft(nonsingles_t,nonsingles_l),1));

rowsum_topleft = ...
full(sum(preproc_topleft(nonsingles_t,nonsingles_l),2));

clear preproc_topleft;

load preproc_topright;
colsum_topright = ...
full(sum(preproc_topright(nonsingles_t,nonsingles_r),1));

rowsum_topright = ...
full(sum(preproc_topright(nonsingles_t,nonsingles_r),2));

clear preproc_topright;

load preproc_botleft;
colsum_botleft = ...
full(sum(preproc_botleft(nonsingles_b,nonsingles_l),1));

rowsum_botleft = ...
full(sum(preproc_botleft(nonsingles_b,nonsingles_l),2));

clear preproc_botleft;

load preproc_botright;
colsum_botright = ...
full(sum(preproc_botright(nonsingles_b,nonsingles_r),1));

rowsum_botright = ...
full(sum(preproc_botright(nonsingles_b,nonsingles_r),2));

clear preproc_botright;

colsum_l = [colsum_topleft + colsum_botleft];
colsum_r = [colsum_topright + colsum_botright];
rowsum_t = [rowsum_topleft + rowsum_topright];
rowsum_b = [rowsum_botleft + rowsum_botright];
clear colsum_top* colsum_bot* rowsum_top* rowsum_bot*;
save rowsum.mat rowsum_*;
save colsum.mat colsum_*;

totentries = sum(rowsum_t) + sum(rowsum_b);

load preproc_topleft;
[i,j,s]= find(preproc_topleft(nonsingles_t,nonsingles_l));
[m,n] = size(preproc_topleft);
clear preproc_topleft;

98

APPENDIX: SOURCE CODE

logodds_els_tl = log10(s .* (totentries - s) ./ ...
((rowsum_t(i)-s) .* (colsum_l(j)’-s)));

logodds_tl = sparse(nonsingles_t(i),nonsingles_l(j),...
logodds_els_tl,m,n);

save logodds_tl.mat logodds_tl;

load preproc_topright;
[i,j,s]= find(preproc_topright(nonsingles_t,nonsingles_r));
[m,n] = size(preproc_topright);
clear preproc_topright;
logodds_els_tr = log10(s .* (totentries - s) ./ ...
((rowsum_t(i)-s) .* (colsum_r(j)’-s)));

logodds_tr = sparse(nonsingles_t(i),nonsingles_r(j),...
logodds_els_tr,m,n);

save logodds_tr.mat logodds_tr;

load preproc_botleft;
[i,j,s]= find(preproc_botleft(nonsingles_b,nonsingles_l));
[m,n] = size(preproc_botleft);
clear preproc_botleft;
logodds_els_bl = log10(s .* (totentries - s) ./ ...
((rowsum_b(i)-s) .* (colsum_l(j)’-s)));

logodds_bl = sparse(nonsingles_b(i),nonsingles_l(j),...
logodds_els_bl,m,n);

save logodds_bl.mat logodds_bl;

load preproc_botright;
[i,j,s]= find(preproc_botright(nonsingles_b,nonsingles_r));
[m,n] = size(preproc_botright);
clear preproc_botright;
logodds_els_br = log10(s .* (totentries - s) ./ ...
((rowsum_b(i)-s) .* (colsum_r(j)’-s)));

logodds_br = sparse(nonsingles_b(i),nonsingles_r(j),...
logodds_els_br,m,n);

save logodds_br.mat logodds_br;

clear;

load logodds_tl.mat logodds_tl;
load logodds_tr.mat logodds_tr;
load logodds_bl.mat logodds_bl;
load logodds_br.mat logodds_br;

99

APPENDIX: SOURCE CODE

logodds = [logodds_tl logodds_tr; logodds_bl logodds_br];

save logodds.mat logodds;

clear;

B.3 Fast Monte Carlo Singular Value Decomposition
fullapproxsvd1.m

The file fullapproxsvd1.m carries out the row sampling and rescaling steps
of the algorithm, and then calculates the singular values and left singular vectors
of the sampled matrix.

clear;

%%% sampling rows %%%

load nonsingles.mat;

load logodds_tl.mat logodds_tl;
rowsqsum_tl = full(sum(logodds_tl(...
nonsingles_t,nonsingles_l).^2,2));

nrows_t = size(logodds_tl,1);
clear logodds_tl;

load logodds_tr.mat logodds_tr;
rowsqsum_tr = full(sum(logodds_tr(...
nonsingles_t,nonsingles_r).^2,2));

clear logodds_tr;

load logodds_bl.mat logodds_bl;
rowsqsum_bl = full(sum(logodds_bl(...
nonsingles_b,nonsingles_l).^2,2));

nrows_b = size(logodds_bl,1);
clear logodds_bl;

load logodds_br.mat logodds_br;
rowsqsum_br = full(sum(logodds_br(...
nonsingles_b,nonsingles_r).^2,2));

clear logodds_br;

100

APPENDIX: SOURCE CODE

nrows = nrows_t + nrows_b;
rowsqsum = [rowsqsum_tl + rowsqsum_tr; ...
rowsqsum_bl + rowsqsum_br];

clear nrows_* rowsqsum_*;

load splits.mat rowsplit colsplit;

% samptimes: the number of times to do the sampling
samptimes = 5;

% samprows: the number of rows to sample
samprows = 4000;

save samppars.mat samptimes samprows;

rowchoicemat = zeros(samprows,samptimes);

cumrowsqsum = cumsum(rowsqsum);
rowchoiceprob = rowsqsum / cumrowsqsum(end);
rowpropmat = cumrowsqsum / cumrowsqsum(end);
fullrowchoiceprob = zeros(nrows,1);
fullrowchoiceprob([nonsingles_t;...
nonsingles_b + rowsplit]) = rowchoiceprob;

clear rowsqsum rowchoiceprob;
save choiceprob.mat fullrowchoiceprob;

top_ns = length(nonsingles_t);

for timescount = 1 : samptimes
rand(’state’,sum(100*clock));
rowrandlist = sort(rand(samprows,1));
rowpropplace = 1;
for rowplace = 1 : samprows
while rowpropmat(rowpropplace) < rowrandlist(rowplace)
rowpropplace = rowpropplace + 1;

end
if rowpropplace <= top_ns
rowchoicemat(rowplace,timescount) = ...
nonsingles_t(rowpropplace);

else

101

APPENDIX: SOURCE CODE

rowchoicemat(rowplace,timescount) = ...
nonsingles_b(rowpropplace - top_ns) + rowsplit;

end
end

end

clear timescount rowrandlist rowpropplace rowplace;
clear cumrowsqsum rowpropmat top_ns;
save choicemat.mat rowchoicemat;

%%% creating the weighted sampled matrix and %%%
%%% multiplying it with itself transposed %%%

rowbk = zeros(samptimes,1);

for timescount = 1 : samptimes
rowbk(timescount) = ...
max(find(rowchoicemat(:,timescount) <= rowsplit));

end
save rowbk.mat rowbk;

for timescount = 1 : samptimes
rcb = rowbk(timescount);
rowmult = 1 ./ sqrt(fullrowchoiceprob(...
rowchoicemat(:,timescount)) * samprows);
save([’rowmult’ int2str(timescount) ’.mat’],’rowmult’);
toprm = sparse(diag(rowmult(1:rcb)));
botrm = sparse(diag(rowmult(rcb+1:end)));
clear rowmult;

load logodds_tl.mat logodds_tl;
temp_tl = logodds_tl(rowchoicemat(1:rcb,timescount),:);
clear logodds_tl;
[i,j,s] = find(temp_tl); [m,n]=size(temp_tl);
temp_tl = sparse(i,j,s,m,n);

load logodds_bl.mat logodds_bl;
temp_bl = logodds_bl(rowchoicemat(...
rcb+1:end,timescount) - rowsplit,:);
clear logodds_bl;
[i,j,s] = find(temp_bl); [m,n]=size(temp_bl);
temp_bl = sparse(i,j,s,m,n);

102

APPENDIX: SOURCE CODE

temp_tltl = temp_tl * temp_tl’;
temp_tlbl = temp_tl * temp_bl’;
temp_blbl = temp_bl * temp_bl’;

clear temp_tl temp_bl;

wtemp_tltl = toprm * temp_tltl * toprm;
wtemp_tlbl = toprm * temp_tlbl * botrm;
wtemp_blbl = botrm * temp_blbl * botrm;

clear temp_*;

load logodds_tr.mat logodds_tr;
temp_tr = logodds_tr(rowchoicemat(1:rcb,timescount),:);
clear logodds_tr;
[i,j,s] = find(temp_tr); [m,n]=size(temp_tr);
temp_tr = sparse(i,j,s,m,n);

load logodds_br.mat logodds_br;
temp_br = logodds_br(rowchoicemat(...
rcb+1:end,timescount) - rowsplit,:);
clear logodds_br;
[i,j,s] = find(temp_br); [m,n]=size(temp_br);
temp_br = sparse(i,j,s,m,n);
clear i j s m n;

temp_trtr = temp_tr * temp_tr’;
temp_trbr = temp_tr * temp_br’;
temp_brbr = temp_br * temp_br’;

clear temp_tr temp_br;

wtemp_trtr = toprm * temp_trtr * toprm;
wtemp_trbr = toprm * temp_trbr * botrm;
wtemp_brbr = botrm * temp_brbr * botrm;

clear temp_*;

diagelem = wtemp_tlbl + wtemp_trbr;

RRT = [wtemp_tltl + wtemp_trtr, diagelem; ...
diagelem’, wtemp_blbl + wtemp_brbr];

103

APPENDIX: SOURCE CODE

eval([’wrsq’ int2str(timescount) ’ = RRT;’]);
clear wtemp_* RRT;

end

save wrsq.mat wrsq*;

clear;

load samppars;

% the following is a slightly more complicated form of
%
%[v,d] = eig(full(wrsq#)); d = sparse(d);
%save wb_eig#.mat d v; clear wrsq d v;
%
% where # is replaced by the sample number

for timescount = 1 : samptimes
load(’wrsq.mat’,[’wrsq’ int2str(timescount)]);
eval([’wrsq = full(wrsq’ int2str(timescount) ’);’]);
eval([’clear wrsq’ int2str(timescount) ’;’]);
[v,d] = eig(wrsq); d = sparse(d);
save([’wb_eig’ int2str(timescount) ’.mat’],’d’,’v’);

end

clear wrsq d v;

% the following generates the following code
%d#=full(real(sqrt(diag(d))));

for timescount = 1 : samptimes
load([’wb_eig’ int2str(timescount) ’.mat’],’d’);
eval([’d’ int2str(timescount)
’= full(real(sqrt(diag(d))));’]);

end
clear d;
save eigvals.mat d*;

fullapproxsvd2.m

The file fullapproxsvd2.m reconstructs the desired approximation to the
right eigensystem of the original matrix.

104

APPENDIX: SOURCE CODE

%%% truncate and find right eigenvectors of R %%%

clear;
load rowbk.mat rowbk;
load choicemat.mat rowchoicemat;
load samppars.mat samptimes;
load splits.mat rowsplit;
load nonsingles.mat nonsingles_l nonsingles_r;

% ntrunc defines the reduced dimension
ntrunc = 200;
% I have set the following parameter manually to
% values between 1 and 5 due to disk space
% limitations
timescount = 1;
rcb = rowbk(timescount);

%for timescount = 1 : samptimes

% calculate R’ * v / d in the following way:
% A(sampled rows)’ * diag(row weighting) * v * diag(1/d)
% thus diag(row weighting) * v * diag(1/d) is a
% multiplier for A’, which we will call ’rightmult’

load(’eigvals.mat’,[’d’ int2str(timescount)]);
eval([’d = d’ int2str(timescount) ’;’]);
eval([’clear d’ int2str(timescount) ’;’]);
[sortd,indexd] = sort(d,1,’descend’);
rec_dtrunc = sparse(diag(1 ./ sortd(1 : ntrunc)));
clear d sortd;

load([’wb_eig’ int2str(timescount) ’.mat’],’v’);
vtrunc = v(:,indexd(1 : ntrunc));
clear v;

load([’rowmult’ int2str(timescount) ’.mat’],’rowmult’);

rightmult = diag(rowmult) * vtrunc * rec_dtrunc;
rightmult_t = rightmult(1:rcb,:);
rightmult_b = rightmult(rcb+1:end,:);
clear rightmult rowmult vtrunc rec_dtrunc;

105

APPENDIX: SOURCE CODE

load logodds_tl.mat logodds_tl;
temp_tl = logodds_tl(rowchoicemat(1:rcb,timescount),:);
clear logodds_tl;
[i,j,s] = find(temp_tl); [m,n]=size(temp_tl);
clear temp_tl; temp_tlT = sparse(j,i,s,n,m);
clear i j s m n;
topH_t = full(temp_tlT * rightmult_t);
clear temp_tlT;

load logodds_bl.mat logodds_bl;
temp_bl = logodds_bl(rowchoicemat(...
rcb+1:end,timescount) - rowsplit,:);

clear logodds_bl;
[i,j,s] = find(temp_bl); [m,n]=size(temp_bl);
clear temp_bl; temp_blT = sparse(j,i,s,n,m);
clear i j s m n;
botH_t = full(temp_blT * rightmult_b);
clear temp_blT;

H_t = topH_t + botH_t;
save H_t.mat H_t;
clear topH_t botH_t H_t;

load logodds_tr.mat logodds_tr;
temp_tr = logodds_tr(rowchoicemat(1:rcb,timescount),:);
clear logodds_tr;
[i,j,s] = find(temp_tr); [m,n]=size(temp_tr);
clear temp_tr; temp_trT = sparse(j,i,s,n,m);
clear i j s m n;
topH_b = full(temp_trT * rightmult_t);
clear temp_trT;

load logodds_br.mat logodds_br;
temp_br = logodds_br(rowchoicemat(...
rcb+1:end,timescount) - rowsplit,:);

clear logodds_br;
[i,j,s] = find(temp_br); [m,n]=size(temp_br);
clear temp_br; temp_brT = sparse(j,i,s,n,m);
clear i j s m n;
botH_b = full(temp_brT * rightmult_b);
clear temp_brT;

H_b = topH_b + botH_b;

106

APPENDIX: SOURCE CODE

clear topH_b botH_b;
save H_b.mat H_b;

mktruncA

The file mktruncA converts the Potsdam corpus to a vector, where words are
replaced by their corresponding vocabulary number.

#!/bin/sh
This file creates a vector containing corresponding
vocabulary numbers of the words in the Potsdam corpus,
in order of appearance.
awk ’{gsub (/[[:cntrl:]]/,"\n");print}’
POTSTEXTPC.TXT > potslines.txt

Note that the next command works because the only
unwanted punctuation is the comma.
awk ’{gsub (/\./," -1"); \

gsub (/ /,"\n"); gsub (/,/,""); \
a = tolower($0); \
print a}’ potslines.txt > potswords.txt

echo ’#\!/bin/sh’ > potsnumscript
echo ’rm -f potsnums.txt’ >> potsnumscript
awk ’NF > 0 { $1 == -1 ?
a = "echo -1 >> potsnums.txt" :
a = "awk ’\’’/[[:space:]]" $0 "$/{print $1 + 0}’\’’
master.numvocab >> potsnums.txt;
echo -2 >> potsnums.txt"; \
print a}’ potswords.txt >> potsnumscript

chmod 700 potsnumscript
potsnumscript

mkordnum

The numerised Potsdam corpus is imported into MATLAB. For each sentence in
the Potsdam corpus, the relevant rows of the log odds transformed occurrence
matrix are extracted and saved to a separate file in the directory Adir.

load potsnums.txt
pots_ordnums = zeros(144,11);
i = 1; j = 1; flag = 0;

for m = 1 : length(potsnums)
curr = potsnums(m);

107

APPENDIX: SOURCE CODE

if curr == -2
if flag == 0
flag = 1;

else
flag = 0;
pots_ordnums(i,j) = 0;

end
j = j + 1;
elseif curr == -1
i = i + 1;
j = 1;
flag = 0;
else
pots_ordnums(i,j) = curr;
flag = 0;
end

end

clear potsnums i j m flag curr;
save pots_ordnums.mat pots_ordnums;

load logodds.mat logodds;
load nonsingles.mat;
load splits.mat rowsplit colsplit;

ns_lr = [nonsingles_l; nonsingles_r + colsplit];
ns_tb = [nonsingles_t; nonsingles_b + rowsplit];

clear nonsingles_*;

for sentence = 1 : 144
A = zeros(11,length(ns_lr));
for word = 1 : 11
if pots_ordnums(sentence,word) > 0
A(word,:) = logodds(pots_ordnums(sentence,word),ns_lr);

end
end
A = sparse(A);
save([’Adir/A’ int2str(sentence) ’.mat’],’A’);

end

108

APPENDIX: SOURCE CODE

fullremult.m

The file fullremult.m carries out the last multiplication, which constructs an
approximate vector representation in the low-dimensional semantic space for each
word in the Potsdam corpus.

clear;
load H_t.mat H_t;
load H_b.mat H_b;
load splits.mat colsplit;
load nonsingles.mat nonsingles_l nonsingles_r;

for sentence = 1 : 144
load([’Adir/A’ int2str(sentence) ’.mat’], ’A’);
AH = A(:,1:length(nonsingles_l)) * ...
H_t(nonsingles_l,:) + ...
A(:,length(nonsingles_l)+1:end) * H_b(nonsingles_r,:);
AHH = ([H_t(nonsingles_l,:) * AH’; ...
H_b(nonsingles_r,:) * AH’])’;
save([’AHHdir/AHH’ int2str(sentence) ’.mat’], ’AHH’);

end

C Reverse SWIFT
The following script calculates the total lexical activation, given an input file con-
taining the sequence of fixations of a number of subjects reading sentences once
only.

% LOADING DATA

% potsdam.mat contains raw corpus data
% We only use
% satz.wl: word length including punctuation
% satz.wl2: word length excluding punctuation
load potsdam.mat satz;

% allsac.mat contains reading data
% We only use the first five columns, which are
% subject
% sentence
% fixated word
% fixated letter (of word)
% fixation duration

109

APPENDIX: SOURCE CODE

load allsac.mat allsac;
allsac = allsac(:,1:5);

% LEXICAL ACTIVATION FUNCTION

leftletter = -8;
rightletter = 12;

x = [leftletter:0.1:rightletter];
sig_r = 3.74;
sig_l = 2.41;
lamb_0 = 1/(sqrt(pi)*(sig_r+sig_l)/sqrt(2));

lamb = zeros(length(x),1);

for ind1 = 1:length(x)
if x(ind1) < 0
lamb(ind1)=lamb_0*exp(-x(ind1)*x(ind1)/(2*sig_l*sig_l));
else
lamb(ind1)=lamb_0*exp(-x(ind1)*x(ind1)/(2*sig_r*sig_r));
end

end

clear sig_r sig_l decay lamb_0 ind1;

% CALCULATE ACTIVATIONS

% missing:holds missing subject data in the following form:
% subject session block sentence
missing = [];
misscount = 0;

% these maximum values are used to determine how many
% loops are required for the main program, and the size of
% certain matrices
maxsubj=max(allsac(:,1));
maxsent=max(allsac(:,2));
maxword=max(allsac(:,3));

% maxfix:arbitrary estimate of the max number of fixations
% per sentence
maxfix = 24;

110

APPENDIX: SOURCE CODE

% totact(word,fixation,subject,sentence) is the total
% processing done on each sentence for each trial
totact = zeros(maxword,maxfix,maxsubj,maxsent);

% fixseq(fixation,subject,sentence) holds the
% fixation position in characters for a particular fixation
fixseq = zeros(maxfix,maxsubj,maxsent);

% fixdur(fixation,subject,sentence) holds the
% fixation duration in msec for a particular fixation
fixdur = zeros(maxfix,maxsubj,maxsent);

for sentence = 1:maxsent
% wordlen:word lengths (without punctuation) of the
% sentence of interest
wordlen = satz(sentence).wl2;

% wordlen_p:word lengths (with punctuation) of the
% sentence of interest
wordlen_p = satz(sentence).wl;

% numword:number of words in the current sentence
numword = length(wordlen);

% wordstart:starting positions of each word
wordstart = ones(1,numword);
for ind2 = 2:numword
wordstart(ind2) = wordstart(ind2-1)+wordlen_p(ind2-1)+1;
end

% numchar:number of characters in the current sentence
numchar = wordstart(numword)+wordlen_p(numword)-1;

% finding the lines that correspond to Sentence Z
indSZ = find(allsac(:,2) == sentence);

% taking only the relevant rows of allsac
SZ = allsac(indSZ);

subject = 0;

111

APPENDIX: SOURCE CODE

% read in fixseq and fixdur
for count = 1:length(indSZ)
if subject ~= SZ(count,1)
subject = SZ(count,1);
fixnum = 1;

else
fixnum = fixnum + 1;

end

fixseq(fixnum,subject,sentence) = ...
wordstart(SZ(count,3)) + SZ(count,4) - 1;

fixdur(fixnum,subject,sentence) = ...
SZ(count,5);

end

clear count subject fixnum indSZ SZ ind2;

% process fixation patterns one at a time
for subject = 1:maxsubj
subfixseq = fixseq(:,subject,sentence);

% note if an expected data entry is missing, and move on
% to the next subject if it is
if max(subfixseq) == 0
misscount = misscount + 1;
missing(misscount,1)=subject;
missing(misscount,2)=sentence;
continue;

end

% remove terminal zeros from the sequence of fixations
while (subfixseq(length(subfixseq)) == 0)
subfixseq = subfixseq(1:length(subfixseq)-1);

end

% calculate lexical processing for each fixation
for fixnum = 1:length(subfixseq)

% stepact: lexical processing over letters
% wordact: lexical processing ’averaged’ over words
% leftprocword: leftmost word to be lexically processed
% rightprocword:rightmost word to be lexically processed
% minind: leftmost character to be lexically processed

112

APPENDIX: SOURCE CODE

% maxind: rightmost character to be lexically processed
% relminind: relative index of minind
% relminind: relative index of maxind
stepact = zeros(1,numchar);
wordact = zeros(1,numword);
leftprocword = max([1 ...
max(find(wordstart <= subfixseq(fixnum)+leftletter))]);

rightprocword = ...
max(find(wordstart <= subfixseq(fixnum)+rightletter));

minind = ceil(max(1,subfixseq(fixnum)+leftletter));
maxind = floor(min(wordstart(numword) + ...
wordlen(numword),subfixseq(fixnum)+rightletter));

relminind = max(find(x <= minind-subfixseq(fixnum)));
relmaxind = max(find(x <= maxind-subfixseq(fixnum)));

% xref: the x-value in the lambda function that
% corresponds to the leftmost letter being
% lexically processed
xref = find(x==minind-subfixseq(fixnum));

% allocate appropriate lexical processing to letters
stepact(minind:maxind) = lamb(relminind:10:relmaxind);

% total lexical processing across each word
for ind3 = leftprocword:rightprocword
startchar = wordstart(ind3);
endchar = startchar + wordlen(ind3) - 1;
wordact(ind3) = sum(stepact(startchar:endchar));

end

% copy previous fixation activations to current fixation
if fixnum > 1
totact(:,fixnum,subject,sentence) = ...
totact(:,fixnum-1,subject,sentence);

end

% add current fixation activations
for ind4 = leftprocword:rightprocword
totact(ind4,fixnum,subject,sentence) = ...
totact(ind4,fixnum,subject,sentence) + ...
wordact(ind4)*fixdur(fixnum,subject,sentence);

end
end

113

APPENDIX: SOURCE CODE

for fixnum = length(subfixseq)+1:maxfix
totact(:,fixnum,subject,sentence) = ...
totact(:,fixnum-1,subject,sentence);

end
end

end

save totact.mat totact maxsubj maxsent maxword maxfix;

114

Bibliography

[1] http://www.r-project.org/.

[2] All Our N-Gram Are Belong To You. http://googleresearch.
blogspot.com/2006/08/all-our-n-gram-are-belong-to-
you.html.

[3] Das Digitale Wörterbuch der deutschen Sprache des 20. Jahrhunderts,
Berlin-Brandenburgischen Akademie der Wissenschaften. http://www.
dwds.de/textbasis/kerncorpus/.

[4] Google acquires Applied Semantics. http://www.google.com/
press/pressrel/applied.html.

[5] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior
of distance metrics in high dimensional space. In Proceedings of the 8th
international conference on database theory, pages 420–434, 2001.

[6] R. H. Baayen, R. Piepenbrock, and H. van Rijn. The CELEX lexical database
(release 1) [CD-ROM], 1993. Linguistic Data Consortium, University of
Pennsylvania, Philadelphia, PA.

[7] M. Banko and E. Brill. Mitigating the paucity-of-data problem: Exploring
the effect of training corpus size on classifier performance for natural lan-
guage processing. In Proceedings of the Conference on Human Language
Technology, 2001.

[8] J. R. Bellegarda. Exploiting latent semantic information in statistical lan-
guage modeling. Proceedings of the IEEE, 88:172–175, 2000.

[9] M. W. Berry. Large scale singular value computations. International Journal
of Supercomputer Applications, 6:13–49, 1992.

[10] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons.
A survey of algorithms and applications for the nonnegative matrix factor-
ization. Computational Statistics and Data Analysis, Submitted 2006.

115

BIBLIOGRAPHY

[11] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for
intelligent information retrieval. SIAM Review, 37:573–595, 1995.

[12] N. Chomsky. Syntactic structures. Mouton de Gruyter, Berlin, 2nd edition,
2002.

[13] P. R. Clarkson and R. Rosenfeld. Statistical language modeling using the
CMU-Cambridge toolkit. In Proceedings ESCA Eurospeech, 1997. http:
//mi.eng.cam.ac.uk/~prc14/toolkit.html.

[14] N. Coccaro and D. Jurafsky. Towards better integration of semantic predic-
tors in statistical language modeling. In ICSLP-98, Sydney, Australia, 1998.

[15] J. Cohen and P. Cohen. Applied multiple regression/correlation analysis
for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1975.

[16] H. M. Collins. The Editing Test for the Deep Problem of AI. Psy-
cologuy, 8(1), 1997. http://www.cogsci.soton.ac.uk/cgi/
psyc/newpsy?8.01.

[17] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. In-
dexing by Latent Semantic Analysis. Journal of the American Society for
Information Science, 41:391–407, 1990.

[18] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algo-
rithms for matrices I: Approximating matrix multiplication. Technical Re-
port YALEU/DCS/TR-1269, Yale University, 2004.

[19] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms
for matrices II: Computing a low-rank approximation to a matrix. Technical
Report YALEU/DCS/TR-1270, Yale University, 2004.

[20] S. Dumais. Enhancing performance in latent semantic indexing retrieval.
Technical Report TM-ARH-017527, Bellcore, 1992.

[21] Ralf Engbert. Model analysis, selection, and comparison: Theoretical con-
cepts and some illustrations from SWIFT, 2006. ECRP Workshop, Eye
Movements in Reading: Computational Models & Corpus Analyses.

[22] Ralf Engbert, Andre Longtin, and Reinhold Kliegl. A dynamical model of
saccade generation in reading based on spatially distributed lexical process-
ing. Vision Research, 42:621–636, 2002.

116

BIBLIOGRAPHY

[23] Ralf Engbert, Antje Nuthmann, Eike Richter, and Reinhold Kliegl. SWIFT:
A dynamical model of saccade generation during reading. Psychological
Review, 112:777–813, 2005.

[24] C. Fellbaum, editor. WordNet: An electronic lexical database. MIT Press,
1998.

[25] J. R. Firth. A synopsis of linguistic theory. In F. R. Palmer, editor, Selected
Papers of J. R. Firth: 1952–1959. Longman, London, 1968.

[26] H. Goodglass. Agrammatism in aphasiology. Clinical Neuroscience,
4(2):51–56, 1997.

[27] J. T. Goodman. A bit of progress in language modeling. Technical Re-
port MSR-TR-2001-72, Machine Learning and Applied Statistics Group,
Microsoft Research, 2001.

[28] T. L. Griffiths, M. Steyvers, D. M. Blei, and J. B. Tenenbaum. Integrating
topics and syntax. In Advances in neural information processing systems,
volume 17, 2005.

[29] J. Hale. A probabilistic Earley parser as a psycholinguistic model. In Pro-
ceedings of the Second Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics, 2001.

[30] F. Jelinek. Continuous speech recognition by statistical methods. Proceed-
ings of the IEEE, 64(4):532–556, 1976.

[31] F. Keller and M. Lapata. Using the web to obtain frequencies for unseen
bigrams. Computational Linguistics, 29(3):459–484, 2003.

[32] S. Kern. Eye movements during repeated reading, 2002. Diplome thesis,
Universität Potsdam.

[33] R. Kliegl, E. Grabner, M. Rolfs, and R. Engbert. Length, frequency, and pre-
dictability effects of words on eye movements in reading. European Journal
of Cognitive Psychology, 16(1/2):262–284, 2004.

[34] R. Kliegl, A. Nuthmann, and R. Engbert. Tracking the mind during read-
ing: The influence of past, present, and future words on fixation durations.
Journal of Experimental Psychology: General, 135:12–35, 2006.

[35] A. Kramer. Herrscher über das Chaos. c’t magazin für computer technik,
9:178–182, 2006. http://ctmagazin.de/.

117

BIBLIOGRAPHY

[36] T. K. Landauer and S. T. Dumais. A solution to Plato’s problem: The Latent
Semantic Analysis theory of the acquisition, induction, and representation
of knowledge. Psychological Review, 104:211–240, 1997.

[37] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to Latent Se-
mantic Analysis. Discourse Processes, 25:259–284, 1998.

[38] T. K. Landauer, D. S. McNamara, S. Dennis, and W. Kintsch, editors. Hand-
book of Latent Semantic Analysis. Lawrence Erlbaum Associates, Mahwah,
NJ, 2007.

[39] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401:788–791, 1999.

[40] W. Lowe. Towards a theory of semantic space. In Proceedings of the 21st
Annual Conference of the Cognitive Science Society, 2001.

[41] B. Manaris, L. Pellicoro, G. Pothering, and H. Hodges. Investigating Es-
peranto’s statistical proportions relative to other languages using neural net-
works and Zipf’s law. In Proceedings of the 2006 IASTED International
Conference on ARTIFICIAL INTELLIGENCE AND APPLICATIONS (AIA
2006), 2006.

[42] J. L. McClelland and T. T. Rogers. The parallel distributed processing ap-
proach to semantic cognition. Nature Reviews Neuroscience, 4:310–322,
2003.

[43] S. A. McDonald, R. H. S. Carpenter, and R. C. Shillcock. An anatomically
constrained, stochastic model of eye movement control in reading. Psycho-
logical Review, 112:814–840, 2005.

[44] S. A. McDonald and R. C. Shillcock. Eye movements reveal the on-line
computation of lexical probabilities during reading. American Psychological
Society, 14:648–652, 2003.

[45] G. A. Miller. The magical number seven, plus or minus two: some limits on
our capacity for processing information. The Psychological Review, 63:81–
97, 1956.

[46] W. S. Murray and K. I. Forster. Serial mechanisms in lexical access: The
rank hypothesis. Psychological Review, 111(3):721–756, 2004.

[47] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent se-
mantic indexing: A probabilistic analysis. Journal of Computer and System
Sciences, 61:217–235, 2000.

118

BIBLIOGRAPHY

[48] M. A. Pitt, W. Kim, D. J. Navarro, and J. I. Myung. Global model analysis
by parameter space partitioning. Psychological Review, 113:57–83, 2006.

[49] J. Quesada. Creating your own LSA spaces. In T. K. Landauer, D. S. Mc-
Namara, S. Dennis, and W. Kintsch, editors, Handbook of Latent Semantic
Analysis. Erlbaum, Mahwah, NJ, 2007.

[50] R. Radach and A. Kennedy. Theoretical perspectives on eye movements in
reading: past controversies, current issues, and an agenda for future research.
European Journal of Cognitive Psychology, 16(1/2):3–26, 2004.

[51] K. Rayner, J. Ashby, A. Pollatsek, and E. D. Reichle. The effects of fre-
quency and predictability on eye fixations in reading: Implications for the
E-Z reader model. Journal of Experimental Psychology: Human Perception
and Performance, 30:720–732, 2004.

[52] E. D. Reichle and P. A. Laurent. Using reinforcement learning to understand
the emergence of “intelligent” eye-movement behavior during reading. Psy-
chological Review, 113:390–408, 2006.

[53] E. D. Reichle, A. Pollatsek, and K. Rayner. E-Z Reader: a cognitive-control,
serial-attention model of eye-movement behavior during reading. Cognitive
Systems Research, 7:4–22, 2006.

[54] R. G. Reilly and R. Radach. Some empirical tests of an interactive activation
model of eye movement control in reading. Cognitive Systems Research,
7:34–55, 2006.

[55] R. Rosenfeld. Two decades of statistical language modeling: where do we
go from here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

[56] R. Rosenfeld, R. Agarwal, B. Byrne, R. Iyer, M. Liberman, E. Shriberg,
J. Unverferth, D. Vergyri, and E. Vidal. Error analysis and disfluency mod-
eling in the switchboard domain. In Proceedings of the International Con-
ference on Speech and Language Processing, 1996.

[57] Christer Samuelsson. Handling sparse data by successive abstraction. In
Proceedings of COLING-96, Kopenhagen, Denmark, 1996.

[58] H. E. H. Schilling, K. Rayner, and J. I. Chumbley. Comparing naming, lex-
ical decision, and eye fixation times: Word frequency effects and individual
differences. Memory and cognition, 26(6):1270–1281, 1998.

119

BIBLIOGRAPHY

[59] M. Steyvers, R. M. Shiffrin, and D. L. Nelson. Word Association Spaces for
predicting semantic similarity effects in episodic memory. In A. F. Healy,
editor, Experimental cognitive psychology and its applications. American
Psychological Association, 2004.

[60] M. Steyvers and J. Tenenbaum. The large scale structure of semantic net-
works: statistical analyses and a model of semantic growth. Cognitive Sci-
ence, 29(1):41–78, 2005.

[61] A. Tarantola. Inverse problem theory and methods for model parame-
ter estimation. Society for Industrial and Applied Mathematics, 2004.
Also available for download at http://www.ipgp.jussieu.fr/~
tarantola/.

[62] W. L. Taylor. Cloze procedure: A new tool for measuring readability. Jour-
nalism Quarterly, 30:415–433, 1953.

[63] A. M. Turing. Computing machinery and intelligence. Mind, 49:433–460,
1950.

[64] P. D. Turney. Mining the web for synonyms: PMI-IR versus LSA on TOEFL.
In L. De Raedt and P. Flach, editors, Proceedings of the Twelfth European
Conference on Machine Learning (ECML-2001), pages 491–502, 2001.

[65] E. K. Warrington. The selective impairment of semantic memory. Quarterly
Journal of Experimental Psychology, 27:635–657, 1975.

[66] S. J. White and S. P. Liversedge. Linguistic and nonlinguistic influences
on the eyes’ landing positions during reading. The Quarterly Journal of
Experimental Psychology, 59(4):760–782, 2006.

[67] C. Whitney. How the brain encodes the order of letters in a printed word:
the SERIOL model and selective literature review. Psychonomic Bulletin &
Review, 8(2):221–243, 2001.

[68] C. Wu, M. Berry, S. Shivakumar, and J. McLarty. Neural networks for
full-scale protein sequence classification: sequence encoding with Singular
Value Decomposition. Machine Learning, 21:177–193, 1995.

[69] G. K. Zipf. Human Behavior and the Principal of Least Effort. Addison
Wesley, Cambridge, 1949.

120

	Title page
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Overview of the dissertation
	1.2 What is predictability?
	1.3 Why do we want to compute predictability?
	1.3.1 Predictability is useful
	1.3.2 Predictability is difficult to collect

	1.4 A computational model of predictability
	1.4.1 Semantics
	First-order semantic measures
	Second-order semantic measures

	1.4.2 Idiomatic constructions
	1.4.3 Morphosyntax

	1.5 Do we really need predictability?
	1.6 Chapter summary

	2 Semantic measures
	2.1 Web co-occurrence measures
	2.1.1 Two possible measures
	Pointwise mutual information
	Conditional co-occurrence probability

	2.1.2 Comparison between the different search engines
	2.1.3 Practical issues with querying search engines via API
	Google
	Yahoo!
	MSN

	2.2 Latent Semantic Analysis measure
	2.2.1 Preprocessing the source text
	Collating the text
	Cleaning and preparing the text
	Conversion into the appropriate format

	2.2.2 Creating the initial term–document matrix
	2.2.3 Weighting the term–document matrix
	Binary coding
	Log odds

	2.2.4 Traditional Singular Value Decomposition
	2.2.5 Fast Monte Carlo Singular Value Decomposition
	The basic algorithm
	Practical problems with the implementation
	Monte Carlo estimation

	2.2.6 Understanding the LSA measure
	Hyperspherical definitions
	Distribution of random vectors in isotropic space
	Anisotropy generated by the nonnegativity of the word frequency matrix
	Effect of anisotropy caused by the singular value distribution
	Conclusions about the shape of the semantic similarity distribution

	2.3 Do the different methods give rise to different semantic measures?
	2.4 Comparison of our semantic measures with predictability
	2.4.1 The effect of function words in the context
	Web pointwise mutual information measure
	Web conditional co-occurrence measure
	LSA measure

	2.4.2 Graphical comparison and interpretation
	Web pointwise mutual information measure
	Web conditional co-occurrence measure
	LSA measure

	2.5 Chapter summary

	3 Word n-gram measures
	3.1 Using a word n-gram model to capture short-range structure
	3.1.1 Training text effects
	3.1.2 The problem of sparse data
	3.1.3 Cross-validation of web frequency estimates

	3.2 Comparison of word n-gram probabilities to predictability
	3.3 Chapter summary

	4 Semantic and word n-gram measures combined
	4.1 Combination of web measures
	4.2 Combination of the web co-occurrence and the LSA measures
	4.3 Chapter summary

	5 Reversing SWIFT to test its lexical processing component
	5.1 What is SWIFT?
	5.2 Implementations of lexical processing
	5.2.1 SWIFT-II
	5.2.2 SWIFT-I
	5.2.3 Additive form
	5.2.4 Other possibilities

	5.3 The Reverse SWIFT method
	5.3.1 An example of the Reverse SWIFT method

	5.4 Relating total lexical activation to word lexical features
	5.4.1 Data
	5.4.2 Initial inspection
	5.4.3 Fitting the data to the proposed models

	5.5 Another look at the form of the lexical processing function
	5.5.1 Rereading paradigm
	5.5.2 Fitting rereading data to the proposed models

	5.6 Other approaches to forming a lexical processing function
	5.6.1 Web vs corpus frequency norms
	5.6.2 Simple transformations of predictability
	5.6.3 Semantic and n-gram measures

	5.7 Chapter summary

	6 Discussion
	6.1 Can we compute predictability?
	6.2 Implications for another application of semantic and n-gram measures
	6.3 Is it possible to improve the lexical processing module in SWIFT?
	6.4 Implications for other reading models
	6.5 Further work

	Appendix: Source code
	A Preprocessing
	A.1 Collation
	A.2 Text cleaning and preparation
	A.3 Conversion into the appropriate format

	B Approximate Latent Semantic Analysis
	B.1 Creating the initial term–document matrix
	B.2 Log odds preprocessing
	B.3 Fast Monte Carlo Singular Value Decomposition

	C Reverse SWIFT

	Bibliography

